# MATH 8 ASSIGNMENT 11: LOGIC REVIEW <br> DEC 9, 2018 

## Statements and Quantifiers

1. Given statements $a$ and $b$, if I know that $\neg(a \wedge b)$ is true and I know that $a$ is true, what can I conclude about $b$ ?
2. Recall that $\mathbb{Z}$ denotes the set of integers. Prove or disprove the following statement: $\forall p \in \mathbb{Z}$ ( $p$ is prime $\Longrightarrow p+1$ is not a power of 2 )
3. Given some object $x$, let $w(x)$ indicate the statement " $x$ has wheels", and $d(x)$ indicate " $x$ can drive". Let $L$ indicate the universe of objects that exist solely on land. So, for example, let my car be called $c_{9}$. Then $w\left(c_{9}\right)$ is true and $d\left(c_{9}\right)$ is true.
(a) Consider the following claim: "any object that exists on land must have wheels in order to drive". How can we represent this as a logical statement?
(b) Suppose I find a wheel factory, which I will call $f$. This factory has wheels but cannot drive. Is $w(f)$ true? What about $d(f)$ ?
(c) Given the existence of the factory $f$, prove or disprove the following statement: $\forall x \in$ $L(w(x) \Longrightarrow d(x))$.

## Logical Equivalence

1. Prove that a positive integer is odd if and only if it can be expressed as a difference of consecutive squares. (Here, consecutive squares means the squares of two positive integers $y, y+1$ ).
2. (a) Given that the product of zero with any integer is zero, and the product of any two nonzero integers is nonzero, prove the following: $\forall x \in \mathbb{Z}(\forall y \in \mathbb{Z}((x y=0) \Longleftrightarrow(x=0 \vee y=0)))$
(b) Given some integer $a$, prove that $\forall x \in \mathbb{Z}\left((x-a)^{2}=0 \Longleftrightarrow x=a\right)$
(c) Prove that $\forall x \in \mathbb{Z}\left(x^{2}-4 x+4=0 \Longleftrightarrow x=2\right)$
3. Suppose I am producing haute-couture fine art on Microsoft Paint, and I begin by opening a blank, white artwork and drawing two black lines. I extend the lines as far as possible so that they intersect the edge of the painting. I then use the color-fill tool, but due to time and dignity constraints, I am only allowed to use it three times. If my goal is to render as much of my artwork as possible into color, prove that there will be a white region left over if and only if the lines I drew intersect each other.
4. Suppose I have three logical statements $a, b, c$, and I want to prove they are all equivalent. That is, I wish to prove $a \Longleftrightarrow b, b \Longleftrightarrow c$, and $a \Longleftrightarrow c$.
(a) Show that if $a \Longrightarrow b$ and $b \Longrightarrow c$ then aimpliesc.
(b) Suppose we manage to prove $a \Longrightarrow b, b \Longrightarrow c$, and $c \Longrightarrow a$. Is this enough to prove that $a \Longleftrightarrow c$ ? [Hint: you can conclude $a \Longleftrightarrow c$ from $a \Longrightarrow c$ and $c \Longrightarrow a$.]
(c) Is $a \Longrightarrow b, b \Longrightarrow c$, and $c \Longrightarrow a$ enough to prove $a \Longleftrightarrow b$ and $b \Longleftrightarrow c$ ?

## Proof by Contradiction

1. Recall that the product of any two positive real numbers is positive. Given real numbers $x$, $y, z$, such that $y>z$ and $x y<x z$, prove that $x<0$. [
2. Recall that an integer $x$ is even if $x=2 k$ for some integer $k$, and $x$ is odd if $x=2 k+1$ for some integer $k$. Given two positive integers $m, n$ such that $m n$ is even, prove that $m$ is even or $n$ is even. (You may assume that any integer that is not even must be odd.)
3. Given that no positive integer is a factor of 1 , prove the following statements:
(a) If $x$ is even, then $x+1$ is not divisible by 2 .
(b) If $x$ is divisible by 5 , then $x+1$ is not divisible by 5 .
(c) If $x+1$ is divisible by 5 , then $x$ is not divisible by 5 .
(d) For any integer $x>1, x$ and $x+1$ have no common factors. (A common factor is a positive integer $k$ that divides both of the integers in question.)
