MATH 8, ASSIGNMENT 25: FERMAT'S LITTLE THEOREM

MAY 5, 2019

The following two results are frequently useful in doing number theory problems:

Theorem (Fermat's Little theorem). For any prime p and any number a not divisible by p, we have $a^{p-1}-1$ is divisible by p, i.e.

$$a^{p-1} \equiv 1 \mod p$$

This shows that remainders of $a^k \mod p$ will be repeating periodically with period p-1 (or smaller). Note that this only works for prime p.

As a corollary, we get that for any a we have

$$a^p \equiv a \mod p$$

More generally, $a^{k(p-1)+1} \equiv a \mod p$.

- 1. Find 5^{2021} modulo 11.
- **2.** Prove that $2019^{3000} 1$ is divisible by 1001. [Hint: 1001 = 7 * 11 * 13.]
- **3.** (a) Show that for any number a which is not divisible by 5 or 7, we have $a^{12} \equiv 1 \mod 35$. [Hint: use Chinese remainder theorem!]
 - (b) Show that for any $a, a^{13} \equiv a^{25} \equiv a \mod 35$.
- 4. (a) Prove that for any integer x, we have $x^5 \equiv x \mod 30$
 - (b) Prove that if integers x, y, z are such that x + y + z is divisible by 30, then $x^5 + y^5 + z^5$ si also divisible by 30.
- 5. Alice decided to encrypt a text by first replacing every letter by a number a between 1–26, and then replacing each such number a by $b = a^7 \mod 31$.

Show that then Bob can decrypt the message as follows: after receiving a number b, he computes b^{13} and this gives him original number a.

6. Find the last two digits of 7^{1000} . [Hint: first find what it is mod 2^2 and mod 5^2 .]