MATH 8, ASSIGNMENT 25: FERMAT'S LITTLE THEOREM

MAY 5, 2019

The following two results are frequently useful in doing number theory problems:
Theorem (Fermat's Little theorem). For any prime pand any number a not divisible by p, we have $a^{p-1}-1$ is divisible by p, i.e.

$$
a^{p-1} \equiv 1 \quad \bmod p .
$$

This shows that remainders of a^{k} mod p will be repeating periodically with period $p-1$ (or smaller). Noet that this only works for prime p.

As a corollary, we get that for any a we have

$$
a^{p} \equiv a \quad \bmod p
$$

More generally, $a^{k(p-1)+1} \equiv a \bmod p$.

1. Find 5^{2021} modulo 11.
2. Prove that $2019^{3000}-1$ is divisible by 1001. [Hint: $1001=7 * 11 * 13$.]
3. (a) Show that for any number a which is not divisible by 5 or 7 , we have $a^{12} \equiv 1 \bmod 35$. [Hint: use Chinese remainder theorem!]
(b) Show that for any $a, a^{13} \equiv a^{25} \equiv a \bmod 35$.
4. (a) Prove that for any integer x, we have $x^{5} \equiv x \bmod 30$
(b) Prove that if integers x, y, z are such that $x+y+z$ is divisible by 30 , then $x^{5}+y^{5}+z^{5}$ si also divisible by 30 .
5. Alice decided to encrypt a text by first replacing every letter by a number a between $1-26$, and then replacing each such number a by $b=a^{7} \bmod 31$.

Show that then Bob can decrypt the message as follows: after receiving a number b, he computes b^{13} and this gives him original number a.
6. Find the last two digits of 7^{1000}. [Hint: first find what it is $\bmod 2^{2}$ and $\bmod 5^{2}$.]

