MATH 8: ASSIGNMENT 19

MARCH 3, 2018

Homework

1. Let A, B, C be on a circle centered at O such that $\angle A O B \cong \angle B O C \cong \angle C O A$. Prove that $\triangle A B C$ is an equilateral triangle.
2. Let A, B be points on circle ω such that the central angle $\angle A O B=x^{\circ}$. What is the angle between chord $A B$ and the tangent line to the circle at A ?
3. Let M be a point outside the circle ω, and let l, l^{\prime} be two lines through M. Denote the points where these lines intersect the circle by A, B (for l) and A^{\prime}, B^{\prime} (for l^{\prime}).

Prove that triangles $M A B^{\prime}$ and $M B A^{\prime}$ have the same angles. Is it true that they are congruent?
4. Let A, B, C, D be points on circle ω that form a quadrilateral. Prove that $m \angle A B C+m \angle A D C$. We call such a quadrilateral a cyclic quadrilateral: it is inscribed in a circle.
5. Let $\triangle A B C$ be an isosceles triangle with base $\overline{A C}$ whose perpendicular bisectors meet at point O. Prove that $\angle B O A \cong \angle B O C$.
6. Given points A, B, what is the locus of points C such that $m \angle A C B=x^{\circ}$ for some number x ?
7. Construct a right triangle, using a straightedge and compass, if you are given the length of its hypotenuse and the altitude from the right angle.

