MATH 8: ASSIGNMENT 18

FEBRUARY 24, 2018

1. Points and Lines

Axiom 1 (Lines). For any two distinct points A, B, there is a unique line containing these points (this line is usually denoted $\overleftrightarrow{A B}$).

Axiom 2 (Distance). If points A, B, C are on the same line, and B is between A and C, then $A C=A B+B C$.
Axiom 3 (Angles). If point B is inside angle $\angle A O C$, then $m \angle A O C=m \angle A O B+m \angle B O C$. Also, the measure of a straight angle is equal to 180°.
Axiom 4 (Euclid's Parallel Postulate). Let line l intersect lines m,n and angles $\angle 1, \angle 2$ are as shown in the figure below (in this situation, such a pair of angles is called alternate interior angles). Then $m \| n$ if and only if $m \angle 1=m \angle 2$.

Theorem 1. If lines l, m intersect, than they intersect at exactly one point.
Theorem 2 (Parallelism). If $l \| m$ and $m \| n$, then $l \| n$.
Theorem 3 (Vertical Angles). Let M be the intersection point of line segments $\overline{A B}$ and $\overline{C D}$. Then $m \angle A M C=m \angle B M D$ (such a pair of angles are called vertical).

Theorem 4 (Perpendicularity). Let l, m be intersecting lines such that one of the four angles formed by their intersection is equal to 90°. Then the three other angles are also equal to 90°. (In this case, we say that lines l, m are perpendicular and write $l \perp m$.)

Theorem 5. Let l_{1}, l_{2} be perpendicular to m. Then $l_{1} \| l_{2}$. Conversely, if $l_{1} \perp m$ and $l_{2} \| l_{1}$, then $l_{2} \perp m$.
Theorem 6. Given a line l and point P not on l, there exists a unique line m through P which is parallel to l.

Theorem 7. Given a line l and a point P not on l, there exists a unique line m through P which is perpendicular to l.

2. Triangles and Congruence

Definition 1 (Triangles). A triangle consists of three points (called the vertices of the triangle) and their three corresponding line segments (the sides of the triangle). A triangle with vertices A, B, C is written $\triangle A B C$, and has sides $\overline{A B}, \overline{B C}$, and $\overline{C A}$, and interior angles $\angle A B C, \angle B C A, \angle C A B$.

Definition 2 (Altitude, Median, Angle Bisector). In triangle $\triangle A B C$,

- The altitude from A is perpendicular to $B C$ (it exists and is unique by Theorem 7).
- The median from A bisects $B C$ (that is, it crosses $B C$ at a point D which is the midpoint of $B C$).
- The angle bisector bisects $\angle A$ (that is, if E is the point where the angle bisector meets $B C$, then $m \angle B A E=m \angle E A C)$.
Definition 3 (Isosceles Triangles). A triangle is isosceles if two of its sides have equal length. The two sides of equal length are called legs; the point where the two legs meet is called the apex of the triangle; the other two angles are called the base angles of the triangle; and the third side is called the base.
Definition 4 (Congruence). Congruence between two objects of the same type indicates the following:
- If two angles $\angle A B C$ and $\angle D E F$ have equal measure, then they are congruent angles, written $\angle A B C \cong \angle D E F$.
- If the distance between points A, B is the same as the distance between points C, D, then the line segments $\overline{A B}$ and $\overline{C D}$ are congruent line segments, written $\overline{A B} \cong C D$.
- If two triangles $\triangle A B C, \triangle D E F$ have respective sides and angles congruent, then they are congruent triangles, written $\triangle A B C \cong \triangle D E F$. In particular, this means $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \overline{C A} \cong \overline{F D}$, $\angle A B C \cong \angle D E F, \angle B C A \cong \angle E F D$, and $\angle C A B \cong \angle F D E$.

Definition 5 (Locus). A locus is the set of all points satisfying a certain property.
The concept of a locus is quite versatile; we will use it to describe lines and circles, but other figures can be described as well. For example, given two points A, B, the locus of points P whose sum of distances to A, B is a fixed constant (i.e. $A P+B P=c$ for some c) is called an ellipse. But that is a fun fact, and we won't dive into this type of figure in our geometry journey for now.

Axiom 5 (SAS Congruence). If triangles $\triangle A B C$ and $\triangle D E F$ have two congruent sides and a congruent included angle (meaning the angle between the sides in question), then the triangles are congruent. In particular, if $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $\angle A B C \cong \angle D E F$, then $\triangle A B C \cong \triangle D E F$.

Axiom 6 (ASA Congruence). If two triangles have two congruent angles and a corresponding included side, then the triangles are congruent.

Axiom 7 (SSS Congruence). If two triangles have three sides congruent, then the triangles are congruent.
Theorem 8 (Triangle Angle Sum). The sum of the three interior angles of any triangle is 180°.
Theorem 9 (Isosceles Base Angles). If $\triangle A B C$ is isosceles, with base $A C$, then $m \angle A=m \angle C$.
Conversely, if $\triangle A B C$ has $m \angle A=m \angle C$, then it is isosceles, with base $A C$.
Theorem 10 (Isosceles Median, Altitude, Angle Bisector). If B is the apex of the isosceles triangle $A B C$, and $B M$ is the median, then $B M$ is also the altitude, and is also the angle bisector, from B.

Theorem 11 (Greater Sides Opposite Greater Angles). In $\triangle A B C$, if $m \angle A>m \angle C$, then we must have $B C>A B$.

Theorem 12 (Greater Angles Opposite Greater Sides). In $\triangle A B C$, if $B C>A B$, then we must have $m \angle A>m \angle C$.

Theorem 13 (The triangle inequality). In $\triangle A B C$, we have $A B+B C>A C$.
Theorem 14 (Perpendicular Bisector). The locus of points equidistant from a pair of points A, B is a line l which perpendicular to $\overline{A B}$ and goes through the midpoint of $A B$. This line is called the perpendicular bisector of $\overline{A B}$.

Theorem 15 (Angle Bisector). For an angle $A B C$, the locus of points inside the angle which are equidistant from the two sides $B A, B C$ is the ray $\overrightarrow{B D}$ which is the angle bisector of $\angle A B C$.
Theorem 16. In any triangle, the following results hold.

1. The perpendicular bisectors of three sides meet at a single point.
2. The three angle bisectors meet at a single point.
3. The three altitudes meet at a single point.

Note: In original handouts, one part of this theorem was stated as Theorem 16, and other parts were given as HW problems.

3. Quadrilaterals

Definition 6 (Quadrilaterals). A figure with four vertices, four corresponding sides, and four enclosed angles is called a quadrilateral; by convention, their vertices are labeled in order going around the perimeter (so, for example, in quadrilateral $A B C D$, vertex A is opposite vertex C). Additionally, a quadrilateral is called

- a parallelogram, if both pairs of opposite sides are parallel.
- a rhombus, if all four sides have the same length.
- a trapezoid, if one pair of opposite sides are parallel. (these sides are called bases) and the other pair is not.
- a rectangle, if all its angles are equal (and thus equal to 90°).

Theorem 17 (Parallelogram). Let $A B C D$ be a parallelogram. Then

- $A B=D C, A D=B C$
- $m \angle A=m \angle C, m \angle B=m \angle D$
- The intersection point M of diagonals $A C$ and $B D$ bisects each of them.

Theorem 18 (Parallelogram 2).

1. Let $A B C D$ be a quadrilateral such that opposite sides are equal: $A B=D C, A D=B C$. Then $A B C D$ is a parallelogram.
2. Let $A B C D$ be a quadrilateral such $A B=D C$, and $\overline{A B} \| \overline{D C}$. Then $A B C D$ is a parallelogram.

Theorem 19 (Rhombus). Let $A B C D$ be a rhombus. Then it is a parallelogram; in particular, the intersection point of diagonals is the midpoint for each of them. Moreover, the diagonals are perpendicular.

Definition 7 (Midline). A midline of a triangle $\triangle A B C$ is a segment connecting the midpoints of any two sides; a midline of a trapezoid $A B C D$ with bases $\overline{A B}, \overline{C D}$ is the segment connecting the midpoints of the non-bases $\overline{A D}, \overline{B C}$.

Theorem 20 (Midline of a Triangle). If $D E$ is the midline of $\triangle A B C$, then $D E=\frac{1}{2} A C$, and $\overline{A D} \| \overline{A C}$.

4. Circles

Definition 8.

- A circle ω with center at O and radius r is the set of all points P such that $O P=r$.
- A radius is any line segment from O to a point A on ω
- A chord is any line segment between distinct points A, B on $\$ \omega$
- A diameter is a chord that passes through O,
- A tangent line is a line that intersects the circle exactly once; if the intersection point is A, the tangent is said to be the tangent through A.

Theorem 21 (Tangent line). Let A be a point on circle ω centered at O, and m a line through A. Then m is tangent to ω if and only if $m \perp \overline{O A}$. Moreover, there is exactly one tangent to ω at A.
Theorem 22 (Chord perpendicular bisector). Let $\overline{A B}$ be a chord of circle ω with center O. Then O lies on the perpendicular bisector of $\overline{A B}$. Moreover, if C is on $\overline{A B}$, then C bisects $\overline{A B}$ if and only if $\overline{O C} \perp \overline{A B}$.
Theorem 23. Let ω_{1}, ω_{2} be circles with centers at points O_{1}, O_{2} that intersect at points A, B. Then $\overline{A B} \perp \overline{O_{1} O_{2}}$.

Theorem 24 (Tangent circles). Let ω_{1}, ω_{2} be circles that are both tangent to line m at point A. Then these two circles have only one common point, A. Such circles are called tangent.

Theorem 25 (Inscribed angle). Let A, B, C be on circle λ with center O. Then $\angle A C B=\frac{1}{2} \angle A O B$. The angle $\angle A C B$ is said to be inscribed in λ.

5. Construction

Definition 9. Euclidea is a straightedge-compass construction game app, available on Google Play and the App Store; you can read about it at https://www.euclidea.xyz and https://twitter.com/euclidea_app

Definition 10. A straightedge is a tool that can construct a line through any two points; a compass is a tool that can construct a circle centered at a given point with radius congruent to a given line segment. A construction is a process whereby one constructs a geometric object by using tools to create other objects and then constructing any desired intersection points of the objects; a straightedge-compass construction is a construction using only straightedge and compass as tools.
In general, to provide a straightedge-compass construction of a figure, you may use any previous straightedgecompass constructions you have made as tools - for example, you may construct a parallel to any line through any point, since we have proven that a straightedge-compass construction of this is possible for any line and point.

So far, we have constructed the following items with straightedge and compass, which you may use in your constructions:

- A line segment $\overline{C D}$ congruent to $\overline{A B}$ given the points A, B, and C;
- An angle at a given ray congruent to another given angle;
- A line parallel to a line l and through a point P;
- A line perpendicular to a line l and through a point P;
- The perpendicular bisector of a line segment $\overline{A B}$;
- The center of a circle;
- The medians, altitudes, and angle bisectors of a triangle;
- A circle that passes through three given points.

6. Homework

1. Try to get through as many levels of Euclidea as possible; the goal is to do the first 5 levels (up to Epsilon).
2. Prove that a diameter is the longest chord of a circle (i.e., any chord that is not a diameter has smaller length than a diameter).
3. (a) Prove that a line cannot intersect a circle at three distinct points.
(b) Prove that two circles cannot intersect at three distinct points.
4. Suppose circles λ, ω with centers O, P respectively intersect at point A such that $m \angle O A P=x^{\circ}$ for some $x<180$.
(a) Prove that the tangents to λ, ω at A also intersect with an angle of measure x°.
(b) Let B be the other point of intersection of λ, ω; prove that $\angle O B P \cong \angle O A P$.
