MATH 8 ASSIGNMENT 11: LOGIC REVIEW
 DEC 9, 2018

Notation Reminder

Logical operations: \vee or; \wedge and; \neg not; \Longrightarrow implies (same as "if...then...");
Quantifiers: $\forall x \in A: \ldots$ for any x in set A, \ldots
$\exists x \in A: \ldots \quad$ there exists an x in set A such that ...
Common notation for sets:
\mathbb{R} : set of real numbers
\mathbb{N} : set of poistive integers $(1,2, \ldots)$
\mathbb{Z} : set of integers (including zero and negatives)

Problems

When doing these problems, you can use the following standard facts about sets \mathbb{R} and \mathbb{Z} :

- Laws for addition and multiplication: commutativity, associativity, distributivity
- Rules for 0 and 1: $0+x=x, 1 \cdot x=x, 0 \cdot x=0$.
- Rules for negatives: for any x, there is a unique number $-x$ such that $x+(-x)=0$, and $-(-x)=x$.
- (For set \mathbb{R} only): any nonzero $x \in \mathbb{R}$ has an inverse: there exists a unique number x^{-1} such that $x \cdot x^{-1}=1$.

1. Given statements A and B, if I know that $\neg(A \wedge B)$ is true and I know that A is true, what can I conclude about B ?
2. An integer number a is called even if $\exists n \in \mathbb{Z}: a=2 n$. A number a is called odd if $\exists n \in \mathbb{Z}: a=2 n+1$. You can use without proof the fact that every integer is either even or odd, but not both.
(a) Prove that if a number is even, then its square is also even
(b) Prove that if integers a, b are even, then $a+b$ is also even.
(c) Prove that an integer number a is odd if and only if a^{2} is odd
(d) Show that if $m n$ is even, then m is even or n is even.
3. For integer numbers a, b, we say that a divides b, or that b is divisible by a (notation: $a \mid b$) is there exists an integer n such that $b=n a$.
(a) Prove that if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
(b) Prove that if $a \mid b$ but a doesn't divide c, then a doesn't divide $b+c$.
4. Prove that a positive integer a is odd if and only if it can be expressed as a difference of consecutive squares. (Here, consecutive squares means the squares of two positive integers $k, k+1$).
5. It is known that integer 1 is not divisible by any positive integer other than 1 . Use it to prove:
(a) If integer n is even, then $n+1$ is not divisible by 2 .
(b) If integer n is divisible by 5 , then $n+1$ is not divisible by 5 .
(c) If $n+1$ is divisible by 5 , then n is not divisible by 5 .
(d) For any integer $n>1, x$ and $n+1$ have no common factors other than 1. (A common factor is a positive integer k that divides both of the integers in question.)
6. Prove or disprove the following statement: $\forall p \in \mathbb{Z}$ (p is prime $\Longrightarrow p+1$ is not a power of 2)
7. (a) Prove that if $x, y \in \mathbb{R}$ are such that $x y=0$, then $x=0 \vee y=0$. [Hint: x has an inverse.]
(b) Prove (using nothing but the basic facts about reals given above) that $x^{2}-5 x+6=0$ if and only if $x=2$ or $x=3$. Here x is a real number.
8. Recall that the product of any two positive real numbers is positive. Given real numbers x, y, z, such that $y>z$ and $x y<x z$, prove that $x<0$.
9. The standard card deck has 52 cards (4 suits, each with 13 values, from 6 to ace). You have drawn 2 cards, which happened to be king of spades and 9 of hearts.

You now draw 3 more cards. What is the probability that your 5 -card hand will contain the following combinations:
(a) Four of a kind: four cards of the same value
(b) Three of a kind: three card of the same value (but not 4 cards of the same value)
(c) Two kings and two nines (but no three of a kind)
(d) Three kings and two nines.

