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Reminder: some logic laws

• Given A =⇒ B and A, we can conclude B (Modus Ponens)
• Given A =⇒ B and B =⇒ C, we can conclude that A =⇒ C. [Note: it doesn’t mean

that in this situation, C is always true! it only means that if A is true, then so is C.]
• Given A ∨B and ¬B, we can conclude A
• Given A =⇒ B and ¬B, we can conclude ¬A
• ¬(A ∧B) ⇐⇒ (¬A) ∨ (¬B) (De Morgan Law)
• (A =⇒ B) ⇐⇒ ((¬B) =⇒ (¬A)) (law of contrapositive)

Note: it is important to realize that statements A =⇒ B and B =⇒ A are not equivalent!
(They are called converse of each other).

Common methods of proof

Conditional proof: To prove A =⇒ B, assume that A is true; derive B using this assump-
tion.

Proof by contradiction: To prove A, assume that A is false and dervie a contradiction (i.e.,
something which is always false – e.g. B ∧ ¬B).

Combination of the above: To prove A =⇒ B, assume that A is true and that B is false
and then derive a contradiction.

Quantifiers

Existential quantifier: To write statements of the form “There exists an x such that...”, use
existential quantifier:

∃x ∈ A : (some statement depending on x)

Here A is a set of all possible values of variable x.
Example: ∃x ∈ R : x2 = 5.
Note that following the quantifier, you must have a statement, i.e. something that can be

true or false. Usually it is some equality or inequality. You can’t write a there an expression
which gives numerical values (for example, ∃x ∈ R : x2 + 1) — it makes no sense.

Universal quantifier: To write statements of the form “For all values of x we have...”, use
universal quantifier:

∀x ∈ A : (some statement depending on x)

Here A is a set of all possible values of variable x.
Example: ∀x ∈ R : x2 > 0.

Logic proofs involving quatifiers

To prove a statement ∃x ∈ A : . . . , it suffices to give one example of x, for which the statement
denoted by dots is true. It is not necessary to explain how you found this value, nor is it necessary
to find how many such values there are.

Example: to prove ∃x ∈ R : x2 = 9, take x = 3; then x2 = 9.



To prove a statement ∀x ∈ A : . . . , you need to give an argument which shows that for any x ∈ A
the statement denoted by dots is true. Considering one, two, or one thusand examples is
not enough!!!

Example: to prove ∀x ∈ R : x2+2x+4 > 0, we coudl argue as follows. Let x be an arbitrary real
number. Then x2 + 2x + 4 = (x + 1)2 + 3. Since a square of a real number is always non-negative,
(x + 1)2 ≥ 0, so x2 + 2x + 4 = (x + 1)2 + 3 ≥ 0 + 3 > 0.

Note that this argument works for any x; it uses n special properties of x except that x is a real
number.

De Morgan laws for quantifiers

(Assuming that A is a nonempty set).
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For example, negation of the statement “All flowers are white” is “There exists a flower which

is not white”.

Homework

1. Write the following statements using quantifiers:
(a) All birds can fly
(b) Not all birds can fly
(c) Some birds can fly
(d) All large birds can fly
(e) Only large birds can fly
(f) No large bird can fly

You can use letter B for the set of all birds, and notation F (x) for statement “x can fly”
and L(x) for “x is large”.

2. Write the following statements using logic connectives and quantifiers:
• All mathematicians love music
• Some mathematicians don’t like music
• No one but a mathematician likes music
• No one would go to John’s party unless he loves music or is a mathematician
Please use the following notation:
P – set of all people
M(x) — x is a mathematician
L(x) — x loves music
J(x) — x goes to John’s party

3. Write each of the following statements using only quantifiers, arithmetic operations, equal-
ities and inequalities. In all problems, letters x, y, z stand for a variables that takes real
values, and letters m,n, k, . . . stand for variables that take integer values.
(a) Equation x2 + x− 1 has a solution
(b) Inequality y3 + 3y + 1 < 0 has a solution
(c) Inequality y3 + 3y + 1 < 0 has a positive real solution
(d) Number 100 is even.
(e) Number 100 is odd
(f) For any integer number, if is is even, then its square is also even.



4. For each of the statements of the previous problem, try to determine if is true. If it is, give
a proof. If not, disprove it (i.e., prove its negation).

*5. Consider the following arguments:
(a) No homework is fun.

Some reading is homework.
Therefore, some reading is not fun.

(b) All informative things are useful.
Some websites are not useful.
Some websites are not informative.

For each of them,
(1) write it in symbolic form, using quantifiers. Use set A for set of all human activities

(which includes reading, wirting, homework, etc) and notation F (x) for “x is fun”, H(x) for
“x is homework”, etc) and

(2) prove it, using the methods of proof discussed in class.
FYI: these are examples of two of Aristotle’s syllogisms, namely Ferio and Baroco. For

more information, google Aristotle and syllogism.

6. In a group of 10 chess players, 14 games were played. Is it true that one can find 3 people
so that none of them have played against another?

[Hint: how many groups of 3 people can one form using 10 people?]


