Math 7
 Euclidean Geometry. Basics.

Basic objects

These objects are the basis of all our constructions: all objects we will be discussing will be defined in terms of these objects. No definition is given for these basic objects.

- Points
- Lines
- Distances: for any two points A, B, there is a non-negative number $A B$, called distance between A, B.
- Angle measures: for any angle $\angle A B C$, there is a real number $m \angle A B C$, called the measure of this angle (more on this later).

We will also frequently use words "between" when describing relative position of points on a line (as in: A is between B and C) and "inside" (as in: point C is inside angle $\angle A O B$).

Having these basic notions, we can now define more objects. Namely, we can give definitions of

- an interval, or line segment is a part of a line consisting of two points, called end points, and the set of all points between them. ($A B$) - a ray is a part of a line consisting of a given point, called the end point, and the set of all points on one side of the end point.
- an angle is the union of two rays having the same end point. The end point is called the vertex of the angle, and the rays are called the sides of the angle. (notation: $\angle A O D$)
- parallel lines: two distinct lines l, m are called parallel (notation: $l \| m$) if they do not intersect, i.e. have no common points

2 First postulates

Axiom 1. For any two distinct points A, B, there is a unique line containing these points (this line is usually denoted $\overleftrightarrow{A B}$).
Axiom 2. If points A, B, C are on the same line, and B is between A and C, then $A C=A B+B C$
Axiom 3. If point B is inside angle $\angle A O C$, then $m \angle A O C=m \angle A O B+m \angle B O C$. Also, the measure of a straight angle is equal to 180°. (see Figure ${ }^{1}$)

Axiom 4. Let line l intersect lines m, n and angles $\angle 1, \angle 2$ are as shown in Figure 2 below (in this situation, such a pair of angles is called alternate interior angles). Then $m \| n$ if and only if $m \angle 1=m \angle 2$.

Figure 1. Angle Addition

Figure 2. Alt. Int. Angles

Figure 3. Vertical Angles

3 First theorems

Theorem 1. If lines l, m intersect, than they intersect at exactly one point.
Proof. Assume that they intersect at more than one point. Let P, Q be two of the points where they intersect. Then both l, m go through P, Q. This contradicts Axiom 1 Thus, our assumption (that l, m intersect at more then one point) must be false.

Theorem 2. If $l \| m$ and $m \| n$, then $l \| n$
Theorem 3. Let A be the intersection point of lines l, m, and let angles 1,3 be as shown in the figure below (such a pair of angles are called vertical). Then $m \angle 1=m \angle 3$.

Proof. Let angle 2 be as shown in the Figure 3. Then, by Axiom 3 $m \angle 1+m \angle 2=180^{\circ}$, so $m \angle 1=180^{\circ}-m \angle 2$. Similarly, $m \angle 3=180^{\circ}-m \angle 2$. Thus, $m \angle 1=m \angle 3$.

Theorem 4. Let l, m be intersecting lines such that one of the four angles formed by their intersection is equal to 90°. Then the three other angles are also equal to 90°. (In this case, we say that lines l, m are perpendicular and write $l \perp \mathrm{~m}$.)

Theorem 5. Let l_{1}, l_{2} be perpendicular to m. Then $l_{1} \| l_{2}$.
Conversely, if $l_{1} \perp m$ and $l_{2} \| l_{1}$, then $l_{2} \perp m$.

4 Homework

1. Prove Theorem 2. [Hint: assume that l and n are not parallel; then they must intersect at some point P...]
2. Prove Theorem 4.
3. Prove Theorem 5.
4. Suppose that instead of studying geometry on the plane, we study geometry on the sphere (say, Earth surface) and take lines to be equators, i.e. intersections of the sphere with a plane going through the center of the sphere. Which of the axioms will be true in this new, "spherical", geometry? Which will be false? Can you suggest a new set of axioms to describe this geometry?
5. In each of the following pictures find the value of x :
(a)

$\overleftrightarrow{A B \|} \|$
6. Given that $\overline{B A} \| \overline{C F}$ and $\overline{B C} \| \overline{E D}$, prove that $m \angle 1=m \angle 2$.

7. Suppose we draw k lines on the plane so that each of them intersects each other, and all intersection points are distinct. Into how many pieces will they cut the plane? [Hint: how does the number of pieces change when you increase k by 1 , i.e. add one more line?]
