MATH 7
 PARABOLA

$$
\text { GRAPHS OF } y=|x| \text { AND } y=x^{2}
$$

The figure below shows graphs of functions $y=|x|$ and $y=x^{2}$; the latter graph is called a parabola.

Transformations of graphs

- Graph of function $y=f(x+a)$ is obtained from graph of $y=f(x)$ by shifting horizontally by a units to the left; for example, graph of $y=(x+1)^{2}$ is parabola with vertex at $(-1,0)$.
- Graph of function $y=f(x)+k$ is obtained from graph of $y=f(x)$ by shifting vertically by k units up; for example, graph of $y=x^{2}+1$ is parabola with vertex at $(0,1)$.
- Finally, graph of $y=k f(x)$ is obtained from graph of $y=f(x)$ by rescaling vertically by factor of k; if k is negative, it means flip upside down and then rescale by factor of $|k|$.
Combining these results, we can sketch the graph of any quadratic function, which will also be a parabola. To sketch it, we need to complete the square, writing

$$
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a}=a(x-h)^{2}+k, \quad h=-\frac{b}{2 a}, \quad k=-\frac{b^{2}-4 a c}{4 a}
$$

For example: $x^{2}+x=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}$
The result will be a parabola obtained by stretching the usual parabola vertically by factor a (if $a<0$, this means flipping it upside down and then stretching by $|a|$) and then moving it so that the vertex will be at point (h, k),

In particular, the branches go up if $a>0$ and down if $a<0$.

Homework

1. For what values of a does the polynomial $x^{2}+a x+14$ has no roots? exactly one root? two roots?
2. Sketch the graphs of the folowing functions and relations:
(a) $x+y=4$
(b) $|x|+y=4$
(c) $x^{2}+4 x+y^{2}-4 y=0$
(d) $y=|x-5|$
(e) $y=|x+1|+|x-1|$
(f) $y=x^{2}-x$
(g) $y=\left|x^{2}-x\right|$
(h) $y=x^{2}-5 x+6$
(i) $y=-2 x^{2}+8 x+6$
3. Solve the following equations and inequalities
(a) $x^{2}-x+6 \geq 0$
(b) $\frac{2 x+1}{x-5} \leq 0$
(c) $x^{4}-3 x^{2}+8=0$
(d) $x(x-2)(x+18)>0$
4. Find all intersection points of parabola $y=x^{2}$ and the circle with radius $\sqrt{6}$ and center at $(0,4)$.
5. Prove that for any point P on the parabola $y=\frac{x^{2}}{4}+1$, the distance from P to the x-axis is equal to the distance from P to the point $(0,2)$.
