Math 7

Algebraic Identities: Summary. Pythagoras' Theorem.

Main Algebraic Identities.

Here is a list of the main algebraic identities we discussed:

1. $(a b)^{n}=a^{n} b^{n}$
2. $\sqrt{a b}=\sqrt{a} \sqrt{b}$
3. $(a+b)^{2}=a^{2}+2 a b+b^{2}$
4. $(a-b)^{2}=a^{2}-2 a b+b^{2}$
5. $a^{2}-b^{2}=(a-b)(a+b)$

Replacing in the last equality a by \sqrt{a}, b by \sqrt{b}, we get

$$
(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})=a-b
$$

which is very helpful in simplifying expressions with roots, for example:

$$
\frac{1}{\sqrt{2}+1}=\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1
$$

We also discussed solving simple equations: linear equation (i.e., equation of the form $a x+b=0$, with a, b some numbers, and x the unknown) and equation where the left hand side is factored as product of linear factors, such as $(x-2)(x+3)=0$.

Pythagoras' Theorem

In a right triangle with legs a and b, and hypotenuse c, the square of the hypotenuse is the sum of squares of each leg. $c^{2}=a^{2}+b^{2}$. The converse is also true, if the three sides of a triangle satisfy $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle. Some Pythagorean triples are: $(3,4,5),(5,12,13),(7,24,25),(8.15,17),(9,40,41),(11,60,61),(20,21,29)$.

To generate such Pythagorean triples, choose two positive integers a and b. Then plug the values into the sides as shown on the first picture:

Try to figure out why the sides of this triangle satisfy the Pythagoras' Theorem!
45-45-90 Triangle: If one of the anglesin a right triangle is 45°, the other angle is also 45°, and two of its legs are equal. If the length of a leg is a, the hypothenuse is $a \sqrt{2}$.

30-60-90 Triangle: If one of the angles in a right triangle is 30°, the other angle is 60°. Such triangle is a half of the equilateral triangle. That means that if the hypothenuse is equal to a, its smaller leg is equal to the half of the hypothenuse, i.e. $\frac{a}{2}$. Then we can find the other leg from the Pythagoras' Theorem, and it will be equal to $\frac{a \sqrt{3}}{2}$.

Homework

1. Simplify
a. $\frac{42^{2}}{6^{2}}=$
b. $\frac{6^{3} \times 6^{4}}{2^{3} \times 3^{4}}=$
c. $\left(2^{-3} \times 2^{7}\right)^{2}=$
d. $\frac{3^{2} \times 6^{-3}}{10^{-3} \times 5^{2}}=$
2. Simplify
a. $\frac{a}{2}+\frac{b}{4}=$
b. $\frac{1}{a}+\frac{1}{b}=$
c. $\frac{3}{x}+\frac{5}{x y}+\frac{5}{3 a}=$
3. Using algebraic identities calculate
a. $299^{2}+598+1=$
b. $199^{2}=$
c. $51^{2}-102+1=$
4. Expand
a. $(4 a-b)^{2}=$
b. $(a+9)(a-9)=$
c. $(3 a-2 b)^{2}=$
5. Factor
a. $a b+a c=$
b. $3 a(a+1)+2(a+1)=$
c. $36 a^{2}-49=$
6. Write each of the following expressions in the form $a+b \sqrt{3}$, with rational a, b :
a. $(1+\sqrt{3})^{2}$
b. $(1+\sqrt{3})^{3}$
c. $\frac{1}{1-2 \sqrt{3}}$
d. $\frac{1+\sqrt{3}}{1-\sqrt{3}}$
e. $\frac{1+2 \sqrt{3}}{\sqrt{3}}$
7. In a trapezoid ABCD with bases AD and $\mathrm{BC}, \angle A=90^{\circ}$, and $\angle D=45^{\circ}$. It is also known that $A B=10 \mathrm{~cm}$, and $A D=3 B C$. Find the area of the trapezoid.
8. In a right triangle $\mathrm{ABC}, \mathrm{BC}$ is the hypotenuse. Draw AD perpendicular to BC , where D is on BC . The length of $\mathrm{BC}=13$, and $\mathrm{AB}=5$. What is the length of AD ?
