Please be prepared to hand in.

Notes

Graphs

We know that any linear equation with two variables can be written in the form $y=m x+b$ and that its graph is a line. In this section, we will see that any quadratic equation of the form $y=a x^{2}+b x+c$ has a curved graph called a parabola.

A line has a constant rate of change, or slope.

$$
m={\frac{y_{2}-y_{1}}{x_{2}-x_{1}}}_{\text {y-intercept: }(0, \mathrm{~b})}
$$

$$
\text { Point-Slope Form: } y=m(x-h)+k
$$

Standard Form: $a x+b y=c$

Parabola
$y=a x^{2}+b x+c$

Line of symmetry

$$
x=-\frac{b}{2 a}
$$

$$
y \text {-intercept }
$$

$$
(0, c)
$$

Quadratic Equations (Parabolas)

- Quadratic Function (Parabola) Standard Form:

$$
f(x)=a x^{2}+b x+c, \text { where } a \neq 0
$$

- Parent Function: $y=x^{2}$
- axis of symmetry: line that passes through the vertex dividing the parabola into two symmetric parts

$$
\text { The axis of symmetry is found by the equation } x=-\frac{b}{2 a}
$$

- vertex: lowest or highest point of the parabola (maximum/minimum; turning point)
- Since the vertex is on the axis of symmetry, find its x-value by using $x=-\frac{b}{2 a}$
- Find its y-value by plugging its x-value back into the function equation

Absolute Value Parent Graph:

Similar to a parabola, there is a turning point.
$=|x-h|+k$
Vertex (h, k)

Please be prepared to hand in.

Homework

1. Find the equation of the line which passes through point $(3,4)$ and has a slope +2 .
(Hint: you only need to find the intercept and write $y=m x+b$)
2. Find the equation of the line through points $(-2,0)$ and $(0,2)$.
3. Graph $y=x^{2}-4$
4. Graph $y=-\frac{1}{2} x^{2}+x+2.5$
5. Graph $y=|x|+2$
6. Graph $y=-|x+1|+4$
