Due: February 3

Please be prepared to hand in.

Just The Basics: Please make sure you are proficient with the following skills and concepts.

Logic and Proof

inference rule	tautology	name
$\begin{array}{c} p \\ p \rightarrow q \\ \therefore q \end{array}$	$(p \land (p \to q)) \to q$	Modus ponens (mode that affirms)
$ \begin{array}{c} \neg q \\ p \to q \\ \vdots \neg p \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens (mode that denies)
$ \begin{array}{c} p \to q \\ q \to r \\ \therefore p \to r \end{array} $	$((p \to q) \land (q \to r)) \to (p \to r)$	hypothetical syllogism
$\begin{array}{c} p \lor q \\ \neg p \\ \vdots q \end{array}$	$((p \lor q) \land (\neg p)) \to q$	disjunctive syllogism

$\therefore \frac{p}{p \lor q}$	$p \to (p \lor q)$	addition
$\therefore \frac{p \wedge q}{p}$	$(p \wedge q) \rightarrow p$	simplification
$\begin{array}{c} p \\ q \\ \vdots p \wedge q \end{array}$	$((p) \land (q)) \to (p \land q)$	conjunction
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \therefore q \lor r \end{array} $	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	resolution

DE MORGAN'S LAWS

NOT (A AND B) = (NOT A) OR (NOT B)

NOT (A OR B) = (NOT A) AND (NOT B)

- 1. In each truth table, which statement should be the heading for column 3?
 - 1. *p q*
 - 2. p q
 - 3. $p \rightarrow q$
 - 4. $p \leftrightarrow q$

Column 1	Column 2	Column 3
р	q	?
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

p	9	?
T	T	Т
Т	F	F
F	Т	F
F	F	F

Column 1	Column 2	Column 3
Р	q	?
Т	Т	Т
Т	F	Т
F	Т	F
F	F	Т

2. Which argument is *not* valid?

	Given: $a \rightarrow b$		Given: $a \rightarrow b$
	а		~b
1.	Conclusion: b	3.	Conclusion: ~a
	Given: $a \lor b$		Given: $a \rightarrow b$
	~b		$b \rightarrow \sim c$
2.	Conclusion: ~a	4.	Conclusion: $a \rightarrow \sim c$

Due: February 3

Please be prepared to hand in.

Due: February 3

Please be prepared to hand in.

3. Fill in the logic proof below with the correct reasons.

Given:
$$Z \lor A$$

 $Z \to L$
 $\sim A$
 $\therefore L$

Statements	Reasons
1. Z V A	1. Given
2. ~A	2. Given
3. <i>Z</i>	3.
$4. Z \rightarrow L$	4. Given
5. <i>L</i>	5.

Given:
$$A \to \sim (B \land C)$$

 B
 $S \to C$
 $P \land Q$
 A
 $\therefore \sim S \land Q$

Statements	Reasons
1. $A \rightarrow \sim (B \land C)$	1. Given
2. A	2. Given
3. ~ (B ∧ C)	3.
4. ~ <i>B</i> ∨ ~ <i>C</i>	4.
5. <i>B</i>	5. Given
6. <i>~C</i>	6.
$7. S \rightarrow C$	7. Given
8. ~S	8.
9. P ∧ Q	9. Given
10. <i>Q</i>	10.
11. ~S /\ Q	11.

Due: February 3

Please be prepared to hand in.

Constructions using a compass and straight-edge

4. Using a compass and straightedge, construct the median to side \overline{AC} in $\triangle ABC$ below.

5. Given: Trapezoid *JKLM* with $\overline{JK} \parallel \overline{ML}$.

Using a compass and straightedge, construct the altitude from vertex J to \overline{ML} .

[Leave all construction marks.]

Due: February 3

Please be prepared to hand in.

6. Construct an equilateral triangle inscribed in circle *T* shown below.

[Leave all construction marks.]

Transformations

Line Reflections:

x-axis: $(x, y) \rightarrow (x, -y)$ *y*-axis: $(x, y) \rightarrow (-x, y)$ the line y = x: $(x, y) \rightarrow (y, x)$

Rotations About the Origin:

90° counter-clockwise: $(x, y) \rightarrow (-y, x)$ 180° (both clockwise and counter-clockwise): $(x, y) \rightarrow (-x, -y)$ 270° counter-clockwise: $(x, y) \rightarrow (y, -x)$

A 90° clockwise rotation is identical to a 270° counter-clockwise rotation. A 270° clockwise rotation is identical to a 90° counter-clockwise rotation. A 180° rotation is identical whether performed clockwise or counter-clockwise.

Translations:

A translation by *a* units in the horizontal direction and *b* units in the vertical direction: $(x, y) \rightarrow (x + a, y + b)$.

Due: February 3

Please be prepared to hand in.

7. In regular hexagon ABCDEF shown below, \overline{AD} , \overline{BE} , and \overline{CF} all intersect at G.

When $\triangle ABG$ is reflected over \overline{BG} and then rotated 180° about point *G*, $\triangle ABG$ is mapped onto

- 1. ΔFEG
- 2. ∆*AFG*
- 3. *∆CBG*
- 4. *∆DEG*
- 8. In the diagram below, $\triangle ABC \cong \triangle DEF$.

Which sequence of transformations maps $\triangle ABC$ onto $\triangle DEF$?

- 1. a reflection over the *x*-axis followed by a translation
- 2. a reflection over the *y*-axis followed by a translation
- 3. a rotation of 180° about the origin followed by a translation
- 4. a counterclockwise rotation of 90° about the origin followed by a translation

Due: February 3

Please be prepared to hand in.

9. Triangle *ABC* is graphed on the set of axes below. Graph and label $\Delta A'B'C'$, the image of ΔABC after a reflection over the line x = 1.

Coordinate Geometry

The Distance Formula	
The distance <i>d</i> between any two points (x_1, y_1) and (x_2, y_2) is given by $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	The Midpoint Formula The midpoint of (x_1, y_1) and (x_2, y_2) is given by $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Partition a Segment

- Label your points (x₁, y₁) and B (x₂, y₂) Note: since it is a directed segment, <u>order does matter</u>.
- 2. 2. Convert the ratio into a percent (keep as a fraction) **a:b** Percent ratio (%) = $\frac{a}{a+b}$
- 3. Find the rise and run for the segment (order does matter) rise: $y_2 - y_1$ run: $x_2 - x_1$
- 4. To find the partitioning point:

 $x - coordinate: x_1 + run (\% in fraction form)$

y - coordinate: y₁ + rise (% in fraction form)

Due: February 3

Please be prepared to hand in.

10. Triangle ABC has coordinates A(-6,2), B(-3,6), and C(5,0). Find the perimeter of the triangle. Express your answer in simplest radical form.

1.
$$15 - \sqrt{125}$$

2. $20 \sqrt{5}$
3. $15 \sqrt{125}$
4. $15 + 5 \sqrt{5}$

11. Point *P* is on the directed line segment from point X(-6, -2) to point Y(6,7) and divides the segment in the ratio 1:5. What are the coordinates of point *P*?

Linear Equations

Due: February 3

Please be prepared to hand in.

12. Line segment NY has endpoints N(-11, 5) and Y(5, -7). What is the equation of the perpendicular bisector of \overline{NT} ?

1.
$$y + 1 = \frac{4}{3}(x + 3)$$

3. $y + 1 = -\frac{3}{4}(x + 3)$

2.
$$y - 6 = \frac{4}{3}(x - 8)$$

4. $y - 6 = -\frac{3}{4}(x - 8)$

Systems of Equations

- 13. Which system of equations will yield the same solution as the system below?
 - x y = 3 2x - 3y = -11. -2x - 2y = -6 2x - 3y = -12. -2x + 2y = 3 2x - 3y = -13. 2x - 2y = 6
 - 2x 3y = -1
 - 4. 3x + 3y = 92x - 3y = -1

Due: February 3

Please be prepared to hand in.

3

14. At Bea's Pet Shop, the number of dogs, *d*, is initially five less than twice the number of cats, *c*. If she decides to

add three more of each, the ratio of cats to dogs will be $\,\,4\,$.

PART A:

Write an equation or system of equations that can be used to find the number of cats and dogs Bea has in her pet shop.

PART B

Could Bea's Pet Shop initially have 15 cats and 20 dogs? Explain your reasoning.

PART C:

Determine algebraically the number of cats and the number of dogs Bea initially had in her pet shop.