Please be prepared to hand in.

Just The Basics: Please make sure you are proficient with the following skills and concepts.

Logic and Proof

inference rule			$\therefore \frac{p}{p \vee q}$	$p \rightarrow(p \vee q)$	addition
$\therefore \begin{gathered} p \\ \therefore \rightarrow q \\ q \end{gathered}$	$(p \wedge(p \rightarrow q)) \rightarrow q$	Modus ponens (mode that affirms)	$\therefore \frac{p \wedge q}{p}$	$(p \wedge q) \rightarrow p$	simplification
$\begin{aligned} & \therefore q \\ & \neg q \\ & \therefore \frac{p \rightarrow q}{\neg p} \\ & \hline \end{aligned}$	$(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$	Modus tollens (mode that denies)	$\begin{aligned} & p \\ & q \\ & \hline p \wedge q \\ & \hline \end{aligned}$	$((p) \wedge(q)) \rightarrow(p \wedge q)$	conjunction
$\therefore \begin{aligned} & p \rightarrow q \\ & q \rightarrow r \end{aligned}, \begin{gathered} p \rightarrow r \end{gathered}$	$((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$	hypothetical syllogism	$\begin{aligned} & \\ & \therefore \quad p \vee q \\ & \therefore \quad \neg p \vee r \\ & q \vee r\end{aligned}$	$((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$	resolution
$\begin{aligned} & p \vee q \\ \therefore & \neg p \end{aligned}$	$((p \vee q) \wedge(\neg p)) \rightarrow q$	disjunctive syllogism			

DE MORGAN'S LAWS

> NOT $($ A AND B) $=($ NOT A $)$ OR (NOT B)
> NOT $(A$ OR B $)=($ NOT A) AND $($ NOT B

1. In each truth table, which statement should be the heading for column 3?
2. $p \wedge q$
3. $p \vee q$
4. $p \rightarrow q$
5. $p \leftrightarrow q$

Column 1	Column 2	Column 3
p	q	$?$
T	T	T
T	F	F
F	T	F
F	F	T

p	q	$?$
T	T	T
T	F	F
F	T	F
F	F	F

Column 1	Column2	Column 3
\boldsymbol{p} \boldsymbol{q}	$\boldsymbol{?}$	
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}

2. Which argument is not valid?

> Given: $a \rightarrow b$
> a
> Conclusion: b
1.
2. Conclusion: $\sim a$

Given: $a \rightarrow b$
$\sim b$
Conclusion: $\sim a$
3.

Given: $a \rightarrow b$ $b \rightarrow \sim c$
Conclusion: $a \rightarrow \sim c$

Please be prepared to hand in.

Please be prepared to hand in.
3. Fill in the logic proof below with the correct reasons.

Given: | $Z \vee A$ | |
| ---: | :--- |
| Z | $\rightarrow L$ |
| | $\sim A$ |
| | $\therefore L$ |

Statements	Reasons
1. $Z \vee A$	1. Given
2. $\sim A$	2. Given
$3 . Z$	3.
$4 . Z \rightarrow L$	4. Given
$5 . L$	5.

Given: $A \rightarrow \sim(B \wedge C)$

$$
\begin{array}{r}
S \rightarrow C \\
P \wedge Q \\
A \\
\hline \therefore \sim S \wedge Q
\end{array}
$$

| Statements | |
| :--- | :--- |\quad Reasons

Due: February 3
Please be prepared to hand in.
Constructions using a compass and straight-edge
4. Using a compass and straightedge, construct the median to side $\overline{A C}$ in $\triangle A B C$ below.

5. Given: Trapezoid $J K L M$ with $\overline{J K} \| \overline{M L}$.

Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$.
[Leave all construction marks.]

Please be prepared to hand in.
6. Construct an equilateral triangle inscribed in circle T shown below.
[Leave all construction marks.]

Transformations

Line Reflections:

x-axis: $(x, y) \rightarrow(x,-y)$
y-axis: $(x, y) \rightarrow(-x, y)$
the line $y=x:(x, y) \rightarrow(y, x)$

Rotations About the Origin:

90° counter-clockwise: $(x, y) \rightarrow(-y, x)$
180° (both clockwise and counter-clockwise): $(x, y) \rightarrow(-x,-y)$
270° counter-clockwise: $(x, y) \rightarrow(y,-x)$
A 90° clockwise rotation is identical to a 270° counter-clockwise rotation.
A 270° clockwise rotation is identical to a 90° counter-clockwise rotation.
A 180° rotation is identical whether performed clockwise or counter-clockwise.

Translations:

A translation by a units in the horizontal direction and b units in the vertical direction: $(x, y) \rightarrow(x+a, y+b)$.

Please be prepared to hand in.

7. In regular hexagon $A B C D E F$ shown below, $\overline{A D}, \overline{B E}$, and $\overline{C F}$ all intersect at G.

When $\triangle A B G$ is reflected over $\overline{B G}$ and then rotated 180° about point $G, \triangle A B G$ is mapped onto

1. $\triangle F E G$
2. $\triangle A F G$
3. $\triangle C B G$
4. $\triangle D E G$
5. In the diagram below, $\triangle A B C \cong \triangle D E F$.

Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$?

1. a reflection over the x-axis followed by a translation
2. a reflection over the y-axis followed by a translation
3. a rotation of 180° about the origin followed by a translation
4. a counterclockwise rotation of 90° about the origin followed by a translation

Due: February 3
Please be prepared to hand in.
9. Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $x=1$.

Coordinate Geometry

The Distance Formula		
The distance d between any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by The Midpoint Formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ The midpoint of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$		

Partition a Segment

1. Label your points $\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$

Note: since it is a directed segment, order does matter.
2. 2. Convert the ratio into a percent (keep as a fraction) a:b

Percent ratio (\%) $=\frac{a}{a+b}$
3. Find the rise and run for the segment (order does matter) rise: $y_{2}-y_{1}$ run: $x_{2}-x_{1}$
4. To find the partitioning point:
x - coordinate: $x_{1}+$ run (\% in fraction form)
y - coordinate: $y_{1}+$ rise (\% in fraction form)

Please be prepared to hand in.

10. Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle. Express your answer in simplest radical form.
11. $15-\sqrt{125}$
12. $20 \sqrt{5}$
13. $15 \sqrt{125}$
14. $15+5 \sqrt{5}$
15. Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio 1:5. What are the coordinates of point P ?
16. $\left(4,5 \frac{1}{2}\right)$
17. $\begin{array}{r}\left.\frac{1}{2},-4\right) \\ \frac{1}{2} \\ (-4,-2\end{array}$

Linear Equations

Slope is equal to \qquad over \qquad

The Slope equation is $m=$ \qquad
Slope-Intercept form looks like: \qquad
" m " stands for the \qquad and " b " stands for the \qquad
and the y-intercept is where my line crosses the \qquad

Point-Slope form looks like: \qquad

Standard Form looks like: \qquad

Parallel Lines have the \qquad slope.

Perpendicular Lines have the \qquad slope.

Please be prepared to hand in.
12. Line segment $N Y$ has endpoints $N(-11,5)$ and $Y(5,-7)$. What is the equation of the perpendicular bisector of $\overline{N Y}$?

1. $y+1=\frac{\frac{4}{3}}{3}(x+3)$
2. $y-6=\frac{4}{3}(x-8)$
3. $y+1=-\frac{3}{4}(x+3)$
4. $y-6=-\frac{3}{4}(x-8)$

Systems of Equations

13. Which system of equations will yield the same solution as the system below?
$x-y=3$
$2 x-3 y=-1$
14. $-2 x-2 y=-6$
$2 x-3 y=-1$
15. $-2 x+2 y=3$
$2 x-3 y=-1$
16. $2 x-2 y=6$
$2 x-3 y=-1$
17. $3 x+3 y=9$
$2 x-3 y=-1$

Due: February 3
Please be prepared to hand in.
14. At Bea's Pet Shop, the number of dogs, d, is initially five less than twice the number of cats, c. If she decides to add three more of each, the ratio of cats to dogs will be $\frac{3}{4}$

PART A:

Write an equation or system of equations that can be used to find the number of cats and dogs Bea has in her pet shop.

PART B

Could Bea's Pet Shop initially have 15 cats and 20 dogs? Explain your reasoning.

PART C:

Determine algebraically the number of cats and the number of dogs Bea initially had in her pet shop.

