Please be prepared to hand in.

1. Triangle $A B C$ is made up of line segments formed from the intersection of lines $L_{A B}, L_{B C}$, and $L_{A C}$.

Write the equations that represent the lines that make up the triangle.
Then, using the properties of equality to change the equations from slope-intercept form, $y=m x+$
b, to standard form, $a x+b y=c$, where a, b, and c are integers, and a is not negative.

2. Given $\overline{A B}$ with midpoint M as shown, prove that the point on the directed segment from A to B that divides $\overline{A B}$ into a ratio of $1: 3$ is the midpoint of $\overline{A M}$.

Due: January 20
Please be prepared to hand in.
3. Determine the equation of the line that goes through points $(1,1)$ and $(3,7)$.
4. Prove using the Pythagorean theorem that $\overline{A C}$ is perpendicular to $\overline{A B}$ given points $A(-2,-2)$, $B(5,-2)$, and $C(-2,22)$.
5. Using the general formula for perpendicularity of segments through the origin and (90,0), determine if $\overline{O A}$ and $\overline{O B}$ are perpendicular.
a. $A(-3,-4), B(4,3)$
b. $A(8,9), B(18,-16)$
6. Given points $N(7,6)$ and $M(7,-2)$:
a. Write the equation of the line through M and perpendicular to $\overline{M N}$.
b. Write the equation of the line through N and perpendicular to $\overline{M N}$.
7. Write the equation of the line through $\left(\sqrt{3}, \frac{5}{4}\right)$ and:
a. Parallel to $y=7$.
b. Perpendicular to $y=7$.
c. Parallel to $\frac{1}{2} x-\frac{3}{4} y=10$.
d. Perpendicular to $\frac{1}{2} x-\frac{3}{4} y=10$.
8. Find the midpoint of $\overline{S T}$ given $S(-2,8)$ and $T(10,-4)$.
9. Find the point on the directed segment from $(-2,0)$ to $(5,8)$ that divides it in the ratio of $1: 3$.
10. Consider the quadrilateral with vertices $(-2,-1),(2,2),(5,-2)$, and $(1,-5)$.
a. Show that the quadrilateral is a rectangle.
b. Is the quadrilateral a square? Explain.
c. What is the area of the quadrilateral?
d. What is the area of the region of the quadrilateral that lies to the right of the y-axis?
e. What is the equation of the perpendicular bisector of the side of the quadrilateral that lies in the fourth quadrant?

