Please be prepared to hand in.

1.

a. Juan can walk to school, a distance of 0.75 mile, in 8 minutes. Assuming he walks at a constant rate, write the linear equation that represents the situation.
b. The figure below represents Lena's constant rate of walking. Who walks faster? Explain.

Please be prepared to hand in.

2. Jeremy rides his bike at a rate of 12 miles per hour. Below is a table that represents the number of hours and miles Kevin rides. Assume both bikers ride at a constant rate.

Time in Hours (\boldsymbol{x})	Distance in Miles (\boldsymbol{y})
1.5	17.25
2	23
3.5	40.25
4	46

a. Which biker rides at a greater speed? Explain your reasoning.
b. Write an equation for a third biker, Lauren, who rides twice as fast as Kevin. Use y to represent the number of miles Lauren travels in x hours.
c. Create a graph of the equation in part (b).

d. Calculate the slope of the line in part (c), and interpret its meaning in this situation.

Please be prepared to hand in.

3. Do the equations $y=-\frac{5}{4} x+2$ and $10 x+8 y=16$ define the same line? Explain
4. Show that if the two lines given by $a x+b y=c$ and $a^{\prime} x+b^{\prime} y=c^{\prime}$ are the same when $b=0$ (vertical lines), then there exists a nonzero number s so that $a^{\prime}=s a, b^{\prime}=s b$, and $c^{\prime}=s c$.
5. Show that if the two lines given by $a x+b y=c$ and $a^{\prime} x+b^{\prime} y=c^{\prime}$ are the same when $a=0$ (horizontal lines), then there exists a nonzero number s so that $a^{\prime}=s a, b^{\prime}=s b$, and $c^{\prime}=s c$.

Due: January 13

Please be prepared to hand in.

6. $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$. Use the picture to answer the question below.

Describe a sequence of rigid motions that would prove a congruence between $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$.
7. Use the diagram to answer the question below.
$k \| l$

Line k is parallel to line $l . m \angle E D C=41^{\circ}$ and $m \angle A B C=32^{\circ}$. Find the $m \angle B C D$. Explain in detail how you know you are correct. Add additional lines and points as needed for your explanation.

Please be prepared to hand in.

8. Use the diagram below to answer the questions that follow. Lines L_{1} and L_{2} are parallel, $L_{1} \| L_{2}$. Point N is the midpoint of segment $G H$.

If the measure of $\angle I H M$ is 125°, what is the measure of $\angle I H J ? \quad \angle J H N$? $\angle N H M$?

Due: January 13

Please be prepared to hand in.

9.

Consider the rectangular region:

a. Does a line with slope $\frac{1}{2}$ passing through the origin intersect this region? If so, what are the boundary points it intersects? What is the length of the segment within the region?
b. Does a line with slope 3 passing through the origin intersect this region? If so, what are the boundary points it intersects?
10. If the line segment connecting point $P(5,2)$ to point $R(3,6)$ is rotated 90° counterclockwise about point R :
a. Where will point P land?
b. What is the slope of the original segment, $\overline{P R}$?

c. What is the slope of the rotated segment? Explain how you know.

Please be prepared to hand in.

11. Given points $A(3,-5)$ and $B(19,-1)$, find the coordinates of point C that sit $\frac{3}{8}$ of the way along $\overline{A B}$, closer to A than to B.
12.

Given points $A(3,-5)$ and $B(19,-1)$, find the coordinates of point C such that $\frac{C B}{A C}=\frac{1}{7}$.

