Due: January 13

Please be prepared to hand in.

- 1.
- a. Juan can walk to school, a distance of 0.75 mile, in 8 minutes. Assuming he walks at a constant rate, write the linear equation that represents the situation.
- b. The figure below represents Lena's constant rate of walking. Who walks faster? Explain.

Due: January 13

Please be prepared to hand in.

2. Jeremy rides his bike at a rate of 12 miles per hour. Below is a table that represents the number of hours and miles Kevin rides. Assume both bikers ride at a constant rate.

a.

Time in Hours (x)	Distance in Miles (y)	
1.5	17.25	a. reasoning.
2	23	
3.5	40.25	b
4	46	as fast as k hours.

Which biker rides at a greater speed? Explain your

b. Write an equation for a third biker, Lauren, who rides twice as fast as Kevin. Use y to represent the number of miles Lauren travels in xours.

c. Create a graph of the equation in part (b).

d. Calculate the slope of the line in part (c), and interpret its meaning in this situation.

Due: January 13

Please be prepared to hand in.

3. Do the equations $y = -\frac{5}{4}x + 2$ and 10x + 8y = 16 define the same line? Explain

4. Show that if the two lines given by ax + by = c and a'x + b'y = c' are the same when b = 0 (vertical lines), then there exists a nonzero number s so that a' = sa, b' = sb, and c' = sc.

5. Show that if the two lines given by ax + by = c and a'x + b'y = c' are the same when a = 0 (horizontal lines), then there exists a nonzero number s so that a' = sa, b' = sb, and c' = sc.

Due: January 13

6.

Please be prepared to hand in.

Describe a sequence of rigid motions that would prove a congruence between $\triangle ABC$ and $\triangle A'B'C'$.

7. Use the diagram to answer the question below.

Line k is parallel to line l. $m \angle EDC = 41^{\circ}$ and $m \angle ABC = 32^{\circ}$. Find the $m \angle BCD$. Explain in detail how you know you are correct. Add additional lines and points as needed for your explanation.

Due: January 13

Please be prepared to hand in.

8. Use the diagram below to answer the questions that follow. Lines L_1 and L_2 are parallel, $L_1 \parallel L_2$. Point N is the midpoint of segment *GH*.

If the measure of $\angle IHM$ is 125°, what is the measure of $\angle IHJ$? $\angle JHN$? $\angle NHM$?

Due: January 13

Please be prepared to hand in.

9. Consider the rectangular region:

a. Does a line with slope $\frac{1}{2}$ passing through the origin intersect this region? If so, what are the boundary points it intersects? What is the length of the segment within the region?

- b. Does a line with slope 3 passing through the origin intersect this region? If so, what are the boundary points it intersects?
- 10. If the line segment connecting point P(5, 2) to point R(3, 6) is rotated 90° counterclockwise about point R:
 - a. Where will point P land?

b. What is the slope of the original segment, \overline{PR} ?

c. What is the slope of the rotated segment? Explain how you know.

Due: January 13

Please be prepared to hand in.

11. Given points A(3, -5) and B(19, -1), find the coordinates of point C that sit $\frac{3}{8}$ of the way along \overline{AB} , closer to A than to B.

12.

Given points A(3, -5) and B(19, -1), find the coordinates of point C such that $\frac{CB}{AC} = \frac{1}{7}$.