Prepare for a test on Transformations next class, including Constructions.
Expect questions on Logic and Proof, as well.

Logic Summary

| p | q | $p \wedge q$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | | |
| T | F | F | | |
| F | T | F | | |
| F | F | F | | |
| T | q | T | $p \vee q$ | |
| T | F | T | | |
| F | T | | | |
| F | T | T | | |
| F | F | F | | |
| T | T | T | | |
| T | F | F | | |
| F | T | T | | |
| F | F | T | | |
| T | T | T | T | T |
| T | F | F | | |
| F | T | F | | |
| F | F | T | | |

Definition. Let p and q be two statements.
The statement $q \rightarrow p$ is called the converse of the implication $p \rightarrow q$.
The statement $\sim p \rightarrow \sim q$ is called the inverse of the implication $p \rightarrow q$.
The statement $\sim q \rightarrow \sim p$ is called the contrapositive of the implication $p \rightarrow q$.

De Morgan's Laws

(i) $\sim(p \vee q) \equiv(\sim p) \wedge(\sim q)$
(ii) $\sim(p \wedge q) \equiv(\sim p) \vee(\sim q)$

Rules of Inference

1. Modus Ponens (method of affirming)
premises: $\mathrm{p}, \mathrm{p} \rightarrow \mathrm{q}$
conclusion: q
2. Modus Tollens (method of denying) premises: $\quad \neg \mathrm{q}, \mathrm{p} \rightarrow \mathrm{q}$
conclusion: $\neg \mathrm{p}$

Constructions Summary

(2)

3. Hypothetical Syllogism premises: $\quad \mathrm{p} \rightarrow \mathrm{q}, \mathrm{q} \rightarrow \mathrm{r}$ conclusion: $p \rightarrow r$
4. Disjunctive Syllogism
premises: $\quad \neg \mathrm{p}, \mathrm{p} \vee \mathrm{q}$
conclusion: q
5. Addition premises: p conclusion: $\mathrm{p} \vee \mathrm{q}$
6. Simplification premises: $p \wedge q$ conclusion: p

Be prepared to hand in your work.

2.

6. 1. Construct the line of reflection for the figures.

8.	Complete the table based on the series of rigid motions performed on $\triangle A B C$ belo		
9.	a) On graph paper, plot the pre-image, Quadrilateral ABCD: $A(-6,4), B(-5,6), C(-4,4), D(-5,2)$ b) Then, reflect the quadrilateral across the line $x=-2$ creating image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ c) Then, translate the image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}(x, y)$ $\rightarrow(x+3, y-5)$ to create image $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$	10.	a) On graph paper, plot the pre-image, Pentagon EFGHI: $E(-5,1), F(-3,3), G(-1,3), H(1,1), I(-2,0)$ b) Then, reflect the pentagon across the line $y=3$ creating image $E^{\prime} F^{\prime} G^{\prime} H^{\prime} I^{\prime}$ c) Then, rotate $E^{\prime} F^{\prime} G^{\prime} H^{\prime} I^{\prime} 90^{\circ}$ counterclockwise about the origin to create image $\left.E^{\prime \prime} F^{\prime \prime} G^{\prime \prime} H^{\prime \prime}\right\|^{\prime \prime}$
11.	Given length a, construct a square with side a	12.	Given length a, construct a regular hexagon with side a
13.	Given the following points, caluclate the distance in simplest radical form and identify the coordinates of the midpoint: $A(-3,-4) \quad B(7,-2)$	14.	Given a triangle $A B C$, construct a circle inscribed in the triangle:
15.	Find the coordinates of the point that partitions the following segment into a $2: 3$ ratio $P(7,1) \quad Q(-3,-4)$	16.	Specify a sequence of transformations that will map ABCD onto PQRS.

17. As the first step in designing a logo, you draw the figure shown in the first quadrant of the coordinate plane. Then you reflect the figure across the x-axis. You complete the design by reflecting the original figure and its image across the y-axis. Draw the completed design.

18. Intersecting at point B on triangle $A B C$ is drawn line $D S$, such that $D S$ is parallel to $A C$. Prove that (or say why the angles will be equal):
(a) $\angle \mathrm{ACB}=\angle \mathrm{SBC}$
(b) $\angle \mathrm{CAB}=\angle \mathrm{DBA}$
(c) $\angle \mathrm{CAB}=\angle \mathrm{SBK}$

(d) If $\angle \mathrm{CAB}=40^{\circ}$ and $\angle \mathrm{BCA}=60^{\circ}$, find angles $\angle \mathrm{ABD}$ and $\angle \mathrm{SBC}$
19. You need a compass and straightedge.

Cedar City boasts two city parks and is in the process of designing a third. The planning committee would like all three parks to be equidistant from one another to better serve the community. A sketch of the city appears below, with the centers of the existing parks labeled as P_{1} and P_{2}. Identify two possible locations for the third park, and label them as $P_{3 a}$ and $P_{3 b}$ on the map. Clearly and precisely list the mathematical steps used to determine each of the two potential locations.

Residential area

Elementary School
High School

Light commercial
(grocery, drugstore, dry cleaners, etc.)
P_{1}

Library

- P_{2}

Industrial area
20. It is known that

1. If you send me an email, then I will finish my program.
2. If you do not send me an email, then I will go to sleep early.
3. If I go to sleep early, I will wake up refreshed.

- Can you conclude "If I do not finish my program, then I will wake up refreshed"?

Use symbolic logic and the laws of inference to create a proof.

