Truth Tables, Tautologies, and Logical Equivalences

- Mathematicians normally use a two-valued logic: Every statement is either True or False.
- A statement in sentential logic is built from simple statements using the logical connectives ~, ∧, ∨, →, and ↔. The truth or falsity of a statement built with these connectives depends on the truth or falsity of its components.
- The compound statement $P \rightarrow (QV \sim R)$ is built using the logical connectives \rightarrow , V, and \sim . The truth or falsity of $P \rightarrow (QV \sim R)$ depends on the truth or falsity of P, Q, and R.
- A truth table shows how the truth or falsity of a compound statement depends on the truth or falsity of the simple statements from which it's constructed. So we'll start by looking at truth tables for the five logical connectives.

And	Or	If then	If and only if	
P Q $P \land Q$	$P \qquad Q \qquad P \lor Q$	$P \qquad Q \qquad P \to Q$	$\begin{array}{ c c c } P & Q & P \leftrightarrow Q \end{array}$	
T T T	Т Т Т	Т Т Т	Т Т Т	
T F F	T F T	T F F	T F F	
F T F	F T T	F T T	F T F	
F F F	F F F	F F T	F F T	
$P \land Q$ should be true $P \lor Q$ is true if either P is		$P \rightarrow Q$ is only false when	$P \leftrightarrow Q$ means that P and	
when both P and Q are	true or Q is true (or both	the hypothesis is true	Q are equivalent. So the	
true, and false — remember that we're		and the conclusion is	double implication is	
otherwise.	using "or" in the	false.	true if P and Q are both	
	inclusive sense). It's only		true or if P and Q are	
	false if both P and Q are		both false; otherwise,	
	false.		the double implication is	
			false.	

- A tautology is a formula which is "always true" that is, it is true for every assignment of truth values to its simple components. You can think of a tautology as a rule of logic.
- The opposite of a tautology is a contradiction, a formula which is "always false". In other words, a contradiction is false for every assignment of truth values to its simple components.

Practice:

- 1) Construct a truth table for the formula $\sim P \land (P \rightarrow Q)$.
- 2) Show that $(P \rightarrow Q) \lor (Q \rightarrow P)$ is a tautology.
- 3) Construct a truth table for $(P \rightarrow Q) \land (Q \rightarrow R)$.
- 4) Show that $P \rightarrow Q$ and $\sim P \lor Q$ are logically equivalent.

ANSWERS

1) Construct a truth table for the formula $\sim P \land (P \rightarrow Q)$.

P	Q	$\sim P$	$P \rightarrow Q$	$\sim P \wedge (P \rightarrow Q)$
Т	Т	F	Т	F
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

2) Show that $(P \rightarrow Q) \lor (Q \rightarrow P)$ is a tautology.

Р	Q	$P \rightarrow Q$	$Q \rightarrow P$	$(P \to Q) \lor (Q \to P)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

3) Construct a truth table for $(P \rightarrow Q) \land (Q \rightarrow R)$.

P	Q	R	$P \rightarrow Q$	$Q \rightarrow R$	$(P \to Q) \land (Q \to R)$
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т
F	F	F	Т	Т	Т

4) Show that $P \rightarrow Q$ and $\sim P \lor Q$ are logically equivalent.

Р	Q	$P \to Q$	$\sim P$	$\sim P \lor Q$
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Since the columns for $P \rightarrow Q$ and $\sim P \lor Q$ are identical, the two statements are logically equivalent.

Inverse, Converse, and Contrapositive:

Conditional Statements have two parts:

The **hypothesis** is the part of a conditional statement that follows **"if"** (when written in if-then form.) It is the given information, or the condition.

The **conclusion** is the part of an if-then statement that follows **"then"** (when written in if-then form.) It is the result of the given information.

Conditional statements can be written in **"if-then"** form to emphasize which part is the hypothesis and which is the conclusion.

Writing Conditional Statements

Hint: Turn the subject into the hypothesis.

Vertical angles are congruent. *can be written as...* If two angles are vertical, then they are congruent.

Seals swim. *can be written as...* If an animal is a seal, then it swims.

Inverse	negate the hypothesis and conclusion of the original conditional	~p → ~q	Right angle is defined as- an angle whose measure is 90 degrees. If you are to write it as inverse statement, it can be done like: If an angle is not a right angle, then it does not measure 90.
Converse	interchange the hypothesis and the conclusion	d → b	If you are to write the converse of: "If two lines don't intersect, then they are parallel", it can be written as "If two lines are parallel, then they don't intersect."
Contrapositive has the same truth value as the original statement.	negate both the hypothesis and conclusion and also interchange these negations	~ q → ~p	The statement 'A triangle is a three- sided polygon' is true; its contrapositive, 'A polygon with greater or less than three sides is not a triangle' is true too.

Practice:

- 1) Write the converse, inverse, and contrapositive of "If you are a brunette, then you have brown hair."
- 2) Write the converse, inverse, and contrapositive of "If you are a guitar player, then you are a musician. "

ANSWERS:

1) Converse: If you have brown hair, then you are a brunette.

Inverse: If you are not a brunette, then you do not have brown hair.

Contrapositive: If you do not have brown hair, then you are not a brunette.

2) Converse: If you are a musician, then you are a guitar player.

Inverse: If you are not a guitar player, then you are not a musician.

Contrapositve: If you are not a musician, then you are not a guitar player.

Tautologies, Logical Equivalences, Laws of Inference

DeMorgan'sLaw \sim (PVQ) \leftrightarrow (\sim PA \sim Q)

DeMorgan'sLaw \sim (P \land Q) \leftrightarrow (\sim P \lor \sim Q)

Contrapositive $(P \rightarrow Q) \leftrightarrow (\sim Q \rightarrow \sim P)$

Modus Ponens	Modus Tollens	hypothetical syllogism
$p \implies q$	$p \implies q$	$p \implies q$
p	$\sim q$	$q \implies r$
$\therefore q$	$\therefore \sim p$	$\therefore p \implies r$
Addition	Disjunctive syllogism	simplification
р	p V q	p ^ q
$\therefore p \lor q$	~р	$\therefore p$
	∴q	$\therefore q$

Practice

- 1) Given: $p \wedge (p \rightarrow q)$ Prove: q
- 2) With these hypotheses:

"It is not sunny this afternoon and it is colder than yesterday."

"We will go swimming only if it is sunny."

"If we do not go swimming, then we will take a canoe trip."

"If we take a canoe trip, then we will be home by sunset."

Using the inference rules, construct a valid argument for the conclusion: "We will be home by sunset."

ANSWERS

1)	Statement	Reason					
	$p \wedge (p -$	ightarrow q) Given					
	P	Simplifica	ation				
	$p \rightarrow q$	Simplifica	ation				
	q	Modus Po	onens				
2)	Choose propo	ositional variables:					
	<i>p</i> : "It is sunn	y this afternoon." <i>i</i>	r : "We v	will go swimming." <i>t :</i> "We will be home by sunset."			
	q : "It is colde	er than yesterday."	<i>s :</i> "We	will take a canoe trip."			
	Tropolation in		:				
	Translation in	ito propositional ic	ogic:				
	Hypotheses: $\neg n \land a \ r \rightarrow n \ \neg r \rightarrow s \ s \rightarrow t$						
	Conclusion: t						
	Conclusion						
	Statement	Reason					
	~p ^ q	Given					
	~p	Simplification					
	q	Simplification					
	r → p	Given					
	~r	Modus Tollens					
	$\sim r \rightarrow s$	Given					
	S	Modus Ponens					
	s → t	Given					
	t	Modus Ponens					