

Using unlined paper, begin with each 'given' and perform the indicated construction. Organize your work so that it can be graded.

ALSO – prepare for a test on Logic and Geometric Constructions next week.

- 1. Given a line *l* and a point A on *l*, construct a perpendicular to *l* through A.
- 2. Given a line / and a point P outside of /, construct a perpendicular to / through P.
- 3. Given length *a*, construct an equilateral triangle with side *a*
- 4. Given length *a*, construct a regular hexagon with side *a*
- 5. Given three lengths *a*, *b*, *c*, construct a triangle with sides *a*, *b*, *c*
- 6. Given a circle, find its center.
- 7. Given a triangle *ABC*, construct a circle inscribed in the triangle.
- 8. Construct a truth table for: $\sim P \land (P \rightarrow Q)$
- 9. Prove that the following statement is a tautology: (P \rightarrow Q) V (Q \rightarrow P)
- 10. Use DeMorgan's Law to write the negation of the following statement, simplifying so that only simple statements are negated: "Calvin is not home or Bonzo is at the movies."
- 11. Replace the following statement with its contrapositive: "If x and y are rational, then x + y is rational."
- 12. Which rule of inference is used in each argument below?

	-		-			
inference rule	tautology	name		p	$n \rightarrow (n) \langle n \rangle$	addition
p	$(p \land (p \to q)) \to q$	Modus ponens (mode that affirms)		$\therefore p \lor q$	$p \rightarrow (p \lor q)$	addition
$p \rightarrow q$				$ \begin{array}{c} p \wedge q \\ \hline p \end{array} $	$(p \wedge q) \rightarrow p$	simplification
$\therefore q$						
$\neg q$	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens (mode that denies)		p	$((p) \land (q)) \rightarrow (p \land q)$	conjunction
$p \rightarrow q$				q		
$\therefore \neg p$				$\frac{1}{p \wedge q}$		
$p \rightarrow q$	$((p \to q) \land (q \to r)) \to (p \to r)$	hypothetical syllogism		$n \lor q$		
$q \rightarrow r$				$p \lor q$ $\neg n \lor r$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	resolution
$\therefore p \rightarrow r$				$\therefore \frac{q \vee r}{q \vee r}$		
$p \lor q$			L			
$\neg p$	$ ((p \lor q) \land (\neg p)) \to q$	disjunctive syllogism				
$\therefore q$						

- a) Alice is a Math major. Therefore, Alice is either a Math major or a CSI major.
- b) Jerry is a Math major and a CSI major. Therefore, Jerry is a Math major.
- c) If it is rainy, then the pool will be closed. It is rainy. Therefore, the pool is closed.
- d) If it snows today, the university will close. The university is not closed today. Therefore, it did not snow today.
- e) If I go swimming, then I will stay in the sun too long. If I stay in the sun too long, then I will sunburn. Therefore, if I go swimming, then I will sunburn.
- f) I go swimming or eat an ice cream. I did not go swimming. Therefore, I eat an ice cream.