MATH 6: ASSIGNMENT 20

Arithmetic sequence

A sequence of numbers is an arithmetic sequence if the difference between consecutive terms is the same number, the common difference, let's call it d.
For example, let's consider the sequence: $1,5,9,13,17, \ldots$
The first term in the sequence is $a_{1}=1$, the second is $a_{2}=5$, and so on. The difference is $d=4$. What is the $n^{\text {th }}$ term? For example what is a_{100} ?

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=a_{1}+d=1+4=5 \\
& a_{3}=a_{2}+d=\left(a_{1}+d\right)+d=a_{1}+2 d=(1+4)+4=1+2 \times 4=9 \\
& a_{4}=a_{3}+d=\left(a_{2}+d\right)+d=\left(\left(a_{1}+d\right)+d\right)+d=a_{1}+3 d=1+3 \times 4=13 \\
& \ldots \\
& a_{n}=a_{1}+(n-1) d
\end{aligned}
$$

So $a_{100}=a_{1}+99 d=1+99 \times 4=397$

Property of an arithmetic sequence

A property of an arithmetic sequence is that any term is the arithmetic mean of its neighbors.

$$
a_{n}=\frac{a_{n-1}+a_{n+1}}{2}
$$

To prove this we can write:

$$
\begin{aligned}
& a_{n}=a_{n-1}+d \\
& a_{n}=a_{n+1}-d
\end{aligned}
$$

Add them up and we have $2 a_{n}=a_{n-1}+a_{n+1}$, divide by 2 and we get $a_{n}=\frac{a_{n-1}+a_{n+1}}{2}$ To find the common difference between 2 terms a_{s} and a_{t}

$$
d=\frac{a_{s}-a_{t}}{s-t} .
$$

Sum of an arithmetic sequence

$$
S=a_{1}+a_{2}+a_{3}+\ldots+a_{n}=n \times \frac{a_{1}+a_{n}}{2}
$$

To prove this, we write the sum in 2 ways, in increasing and decreasing order:
$S=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$
$S=a_{n}+a_{n-1}+a_{n-2}+\ldots+a 1$
Adding up, we notice that $a_{1}+a_{n}=a_{2}+a_{n-1}=a_{3}+a_{n-2}=\ldots$
$2 S=\left(a_{1}+a_{n}\right) \times n$ and dividing by 2 gives us $S=n \times \frac{a_{1}+a_{n}}{2}$.

Homework Problems

1. Write the first 5 terms of an arithmetic sequence if $a_{1}=7$ and $d=2$.
2. What are the first 2 terms for the sequence $a_{1}, a_{2},-9,-2,5, \ldots$
3. $a_{10}=131$ and $d=12$. What is a_{1} ?
4. $a_{5}=27$ and $a_{27}=60$. Find the first term and the common difference.
5. Find the common difference in an arithmetic sequence if the $9^{\text {th }}$ term is 18 and the $11^{\text {th }}$ term is 44 .
6. Find the sum of the first 100 terms if $a_{1}=10$ and $a_{100}=150$.
7. Find the sum of all odd numbers from 1 to 2011.
*8. Can you continue the following sequence: $-2,1,6,13,22, \ldots$ [Hint: look at the differences of successive terms!]
8. Find the shortest distance from the origin $(0,0)$ to the line given by the equation $y=-2 x+8$.
9. Compute the area of the rectangle $A B C D$ if A is at $(0,0), B$ at $(2,3)$, and D at $(-6,8)$. [It can be done in more than one way.]
