Math 5C: Classwork 18
Homework \#18 is due March 3-rd

Square-roots

The square-root of $2(\sqrt{2})$ is not a rational number, i.e. it cannot be written as a fraction. Let us assume that $\sqrt{2}=\frac{p}{q}$ where p and q are some whole numbers and the fraction $\frac{p}{q}$ cannot be simplified further. We can write:

$$
\begin{gathered}
(\sqrt{2})^{2}=\left(\frac{p}{q}\right)^{2} \\
2=\frac{p^{2}}{q^{2}} \\
2 q^{2}=p^{2}
\end{gathered}
$$

So that:
Thus, p must be an even number and could be rewritten as: $p=2 m$. Substituting:

So that:

$$
2 q^{2}=p^{2}=4 m^{2}
$$

Thus, q must be an even number. This contradicts our initial assertion that $\frac{p}{q}$ could not be simplified further (at least each p, q could be reduced by one factor of 2 each). Therefore, we have proven by contradiction that $\sqrt{2}$ cannot be written as a rational number.

Rational numbers

Definition: A rational number is a number that can be in the form p / q where p and q are integers and q is not equal to zero.

Example: $2 / 3$ is a rational number because 3 and 2 are both integers
Pigeonhole principle states that if \boldsymbol{n} items are put into \boldsymbol{m} pigeonholes with $\boldsymbol{n} \boldsymbol{>} \boldsymbol{m}$, then at least one pigeonhole must contain more than one item.

Theorem: any rational number is a finite or repeating decimal. The way we proved is using Pigeonhole principle.

Review

1. Operations with powers:

$$
\begin{aligned}
& a^{n}=a \cdot a \cdots a(n t i m e s) \\
& (a \cdot b)^{n}=a^{n} \cdot b^{n} \\
& a^{m} \cdot a^{n}=a^{m+n} ; \\
& a^{m} \div a^{n}=a^{m-n} \\
& a^{0}=1 \\
& a^{-n}=\frac{1}{a^{n}}
\end{aligned}
$$

2. We reviewed solving equations and solving rational equations by multiplying both sides of the equation with the denominator, for example.

$$
\begin{gathered}
\frac{(x+1)}{3}=7 \\
\frac{(x+1)}{3} \times 3=7 \times 3 \\
(x+1)=21 \\
x=20
\end{gathered}
$$

We also revised the identities:

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& (a+b)(a-b)=a^{2}-b^{2}
\end{aligned}
$$

And factorizing:

$$
a(b+c)=a b+a c
$$

\ldots and used them to solve equations.
We solved equations with exponents: $a^{x}=a^{c}$ and found out that if we have equal bases we need only compare the exponents (powers) to find the unknown: $x=c$.

So, we need to find a way to rewrite the equations where both sides have the same base.

Geometry: Angles

$\angle \alpha=\angle \alpha-$ opposite
$\angle 1=\angle 3=$ alternate internal angles
$\angle \alpha+\angle \beta=180^{\circ}-$ on a straight line,
$\angle 1=\angle 2=$ corresponding angles
Or complementary angles
$\angle 4=\angle 2=$ alternate exterior angles

From both these pieces of information we can show that the sum of angles in a triangle is always 180°.

Homework

1. On the picture, a and b, which are parallel to each other, are intersected by line c. What are the relationships:
(a) $\angle 3$ and $\angle 5$
(b) $\angle 2$ and $\angle 8$
(c) Prove that $\angle 4+\angle 5=180^{\circ}$.

2. In the same picture,
(a) if $\angle 7=65^{\circ}$, find: $\angle 1, \angle 3, \angle 1+\angle 6$
(b) If you know that $\angle 7=\angle 1$, prove that $*: \angle 1=\angle 3$ and $\angle 5=\angle 1$
(* or say why the angles will be equal)
3. Intersecting at point B on triangle $A B C$ is drawn line DS, such that DS is parallel to AC. Prove that (or say why the angles will be equal):
(a) $\angle \mathrm{ACB}=\angle \mathrm{SBC}$
(b) $\angle \mathrm{CAB}=\angle \mathrm{DBA}$
(c) $\angle \mathrm{CAB}=\angle \mathrm{SBK}$
(d) If $\angle \mathrm{CAB}=40^{\circ}$ and $\angle \mathrm{BCA}=60^{\circ}$, find angles $\angle \mathrm{ABD}$ and $\angle \mathrm{SBC}$
4. In triangle $\mathrm{ABC}, \angle \mathrm{A}=35^{\circ}, \angle \mathrm{B}=55^{\circ}$,
 prove that this triangle is right-angled.
5. What type of triangle has one angle equal to the sum of the other two?
6. Find each of the outside angles of a right-triangle, if one of its angles is 58°.
7. Consider the sequence $7,72,73, \ldots 7 n \ldots$
(a) Show that there will be two numbers in this sequence which have the same last two digits. [Hint: pigeonhole principle!]
(b) Show that from some moment, the last two digits of numbers in this sequence will start repeating periodically.
