Math 5c: Classwork \& Homework 12
Homework \#12 is due January 13.

Review

Powers:

$$
\begin{aligned}
& a^{n}=a \times a \times a \times \ldots \times a(n \text { times }) \\
& \begin{array}{ll}
a^{0}=1 & \quad \text { read: } a \text {-to-the-zero } \\
a^{1}=a & \quad \text { is just itself ' } a \\
\begin{array}{l}
\text { a }
\end{array} \\
\left.a^{n}\right)^{n}=a^{n} \times b^{n} \\
a^{m}=a^{n+m} \\
\frac{a^{n}}{a^{m}}=a^{n-m} \\
a^{n}=\frac{1}{a^{-n}} \quad, a^{-n}=\frac{1}{a^{n}}
\end{array}
\end{aligned}
$$

1. If $a=2^{19} 3^{-91}$ and $b=2^{-46} 3^{-68}$ what is the value of $a b$? of a / b ?

Difference of squares formula: $\quad(x-a)(x+a)=\left(x^{2}-a^{2}\right)$ Square of the difference formula: $\quad(a-b)(a-b)=(a-b)^{2}=a^{2}-2 a b+b^{2}$ Square of the sum formula: $\quad(a+b)(a+b)=(a+b)^{2}=a^{2}+2 a b+b^{2}$

Binary Numbers: Numbers represented by using only 0 s and 1s.
Powers of 2

n	0	1	2	3	4	5	6	7	8	9
2^{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{3 2}$	$\mathbf{6 4}$	$\mathbf{1 2 8}$	$\mathbf{2 5 6}$	$\mathbf{5 1 2}$

Example: Numbers in decimal notation can be presented like this (same as converting a number to a decimal notation): $351=3 \times 100+5 \times 10+1 \times 1$
Similarly, to convert a number into a binary, we need to represent it in powers of 2 :

$$
\begin{aligned}
351= & \mathbf{2 5 6}+95=\mathbf{2 5 6}+\mathbf{6 4}+31=\mathbf{2 5 6}+\mathbf{6 4}+\mathbf{1 6}+15=\mathbf{2 5 6}+\mathbf{6 4}+\mathbf{1 6}+\mathbf{8}+7=\mathbf{2 5 6}+ \\
& \mathbf{6 4}+\mathbf{1 6}+\mathbf{8}+\mathbf{4}+\mathbf{2}+\mathbf{1} \\
351= & 1 \times 2^{8}+0 \times 2^{7}+1 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=101011111
\end{aligned}
$$

To convert number from binary to decimal we use the familiar rule where we multiply each digit by the position value in base 2 . For example:

$$
1010=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=8+0+2+0=10
$$

Classwork

1. Simplify the following and show the answer in the exponent (power) form
(a) $\frac{3^{7} \cdot 2^{7}}{2^{3} \cdot 2^{4}}=$
(b) $\frac{6^{5} \cdot 2^{4}}{3^{5} \cdot 2^{2}}=$
(c) $\frac{7^{9} \cdot 2^{5}}{7^{2} \cdot 2^{4}}=$
(d) $\frac{11^{4}}{11^{2} \cdot 5^{2} \cdot 5^{3}}=$
2. Solve the equations:
(a) $\frac{9}{13} z=3$
(b) $|x|=2$
(c) $|x+11|=2$
(d) $\frac{x}{2}+1=\frac{4 x}{7}$
(e) $x=\frac{1}{4} x+6$
(f) $\frac{x+3}{x+1}=4$
3. Convert the decimal numbers to binary:

$$
9,12
$$

4. Convert the following binary numbers to decimal:

101, 1001
5. Base 4 numbers:
a) add two base 4 numbers together:

123
$+321$

3201
$+2310$
[Do not add in base 10 and translate the result to base 4, try performing addition in base 4, think base 4]

Homework 12 problems

1. Solve the following equations:
a) $3(x-1)-4=3 x+8$
b) $5(x-1)-4=3 x+8$
c) $\frac{1}{2}(x-1)=-19$
d) $|2 x|=10$
2. Simplify the following and show the answer in the exponent (power) form
(a) $7^{4} \cdot 11^{2} \cdot 11^{-5} \cdot 7^{2}=$
(b) $\frac{3^{-5} \cdot 2^{7}}{3^{-3 \cdot} \cdot 2^{4}}=$
(c) $\frac{42^{2}}{6^{2}}=$
(d) $\frac{3^{5} \cdot 3^{-5}}{3^{9}}=$
(e) $\frac{x^{2} \cdot y^{2} \cdot x^{-3}}{x^{2}}=$
3. Convert the decimal numbers to binary:
$9=$
$12=$
$24=$
$38=$
$45=$
4. Convert the following binary numbers to decimal:
$101=$
$1001=$
$10110=$
5. Factor the following number into primes: $99^{2}-9^{2}$. [Hint: you do not have to compute this number.]
$99^{2}-9^{2}=$
6. Can you find whole numbers $a ; b$ such that $a^{2}-b^{2}=17$? [Hint: use the formula we talked about in class, and think what $a-b$ and $a+b$ must be.]
$a^{2}-b^{2}=17$
$\mathrm{a}=$
$\mathrm{b}=$
7. For the following problem, you need to know that the speed of light is about $300,000 \mathrm{~km} / \mathrm{sec}$, and one year is about 3×10^{7} seconds.
a) In astronomy, a common unit of distance is a light year: the distance light covers in one year. How many kilometers is it?
b) Another common unit of distance in astronomy is a parsec, which is approximately equal to $3 \times 10^{13} \mathrm{~km}$.

- Can you compute how many parsecs are there in one light year?
- How many parsecs is the distance between Earth and Sun (The distance is about $\left.1.5 \times 10^{8} \mathrm{~km}\right)$?
- How many parsecs is the distance between Earth and the Andromeda Nebula (2,000,000,000,000,000,000,000 km)?

8. If $a=3^{19} 5^{-91}, b=2^{-46} 3^{-68}, c=2^{54} 5^{-8}$, and $d=10^{7} 2^{-4} 3^{-5}$ what is the value of $a b$? of a / b ? abc? ab/c? abcd? ab/cd?
$a b=$
$a / b=$
$\mathrm{abc}=$
$\mathrm{ab} / \mathrm{c}=$
$\operatorname{abcd}=$
$\mathrm{ab} / \mathrm{cd}=$
9. How many zeroes does the number $4^{15} 5^{26}$ end with?
10. Base 4 numbers:
a) add two base 4 numbers together:
[Do not add in base 10 and translate the result to base 4, try performing addition in base 4, think base 4]

123
$+331$

3201
$+2313$
b) Write a formula, instruction, or algorithm on how to translate base 4 number $\boldsymbol{a b c} \boldsymbol{d}$ to base 10 number, where $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ can be $0,1,2$, or 3 .
c) Translate the numbers and the results from a) into the base-10 system $123_{4}=$ $331_{4}=$
result $1=$
$3201_{4}=$
$2313_{4}=$
result2 $=$

