Combinations

1) How many different 3 -digit numbers can we create using 8 digits, $1,2,3,4,5,6,7$, and 8 without repetition of the digits, i.e. such numbers that only contain different digits?
2) How many different ways are there to choose a team of 3 students out of 8 to participate in the math Olympiad.

In both cases, we have 8 possible ways to choose the first item (digit or student), 7 possible ways to choose the second item, and 6 different ways to choose the third one. So, there are $8 \cdot 7 \cdot 6$ different 3-digit numbers (permutations) created from digits 1, 2, 3, 4, 5, 6, 7 and 8.

$$
P(8,3)=8 \cdot 7 \cdot 6=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{8!}{5!}=\frac{8!}{(8-3)!}
$$

How about the teams of 3 students? Is it $8 \cdot 7 \cdot 6$ different teams of 3 students out of 8 ?

We can create numbers $123,132,213,231,321,312$ and they are all
 different numbers (permutations -the number of ways to arrange three digits in a three-digit number 3!)

If we chose Peter, Maria, and Jessika, a team of 3 students for the math Olympiad, it doesn't matter in which order we pick their names.
There is only 1 way to pick these 3 students.

So for each group of 3 kids we will count 6 times (3! - number of ways to put 3 kids in line) more possible choices than there really are. So in order to find those choices/combinations of kids we need to divide permutations by the number of ways we can arrange 3 kids in 3 places with is 3 !.

$$
8 C 3=\frac{8 \cdot 7 \cdot 6}{3!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3!\cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{8!}{3!\cdot 5!}=\frac{8!}{3!\cdot(8-3)!}
$$

Combinations are the ways of choosing objects from a set of an objects and their order does NOT matter. To get from a permutation to a combination, we divide by the total number of ways to order the objects we choose.

With permutations we care about the order of the elements, whereas with combinations we don't. For example, say your locker "code" is 5782. If you enter 2875 into your locker it won't open because it is a different ordering (aka permutation) all though the combination of numbers is the same.

We write permutation as ${ }_{10} \mathrm{P}_{4}$ which means: find all possible permutations (orders) of 4 objects if you have a choice of 10. In this case, find all possible locker codes. So: A "combination lock" should really be called a "permutation lock". The order you put the numbers in matters. (A true "combination lock" would accept both 5782 and 2875 as correct.)

We write combination as ${ }_{10} \mathrm{C}_{4}$ which means: Find all possible combinations of 4 objects if you have a choice of 10 . Say you have 10 friends and you can invite only 4 of them to a movie, because you only have that many tickets to spare. What are the combinations? The order does not matter in this case.

- Your odds of being struck by lightning this year are $\mathbf{1}$ in $\mathbf{9 6 0 , 0 0 0}$.
- In your lifetime those odds drop to about 1 in 12,000.
- Your odds of being struck by lightning twice in your lifetime are 1 in 9 million
- The odds of getting attacked and killed by a shark are 1 in $3,748,067$.
- Odds of dying from fireworks ($\mathbf{1}$ in $\mathbf{3 4 0 , 7 3 3}$) or drowning ($\mathbf{1}$ in $\mathbf{1 , 1 3 4}$)

Geometry.

The shortest distance between two points is a part of a straight line passing through these two points (a segment).

The distance between a point and a line is defined as the shortest distance between a fixed point and any point on the line. It is the length of the line
 segment that is perpendicular to the line and passes through the point

AO is a perpendicular drawn from the point A to the line. $|\mathrm{AO}|$ is the distance between the point A and the line l.

The distance between two parallel lines in the length of perpendicular drawn from a point on one line to anothe

