Exponents

The main reason we use exponents is because it's a shorter way to write out big numbers.
Exponentiation is a mathematical operation, written as $\boldsymbol{a}^{\boldsymbol{n}}$, involving two numbers, the base a and the exponent n. When n is a positive integer, an exponent tells us to multiply the base by itself that number of times: We can say that a is raised to the power of n.
\mathbf{a}^{n} tells you multiply a by itself n times:

4^{3} This tells us to multiply the base 4 by itself 3 times: $4^{3}=4 \times 4 \times 4$

When exponent n of the base a is a negative integer, it tells us to divide 1 by the base that number of times. Or multiply 1 by the base that number of times and take a reciprocal number

$$
a^{-n}=\frac{1}{a^{n}}
$$

Properties of exponent:

If the same base raised to the different power and then multiplied:

$$
b^{3} \times b^{4}=(b \times b \times b) \times(b \times b \times b \times b)=b \times b \times b \times b \times b \times b \times b=b^{3+4}=b^{7}
$$

$$
b^{n} \times b^{m}=b^{n+m}
$$

If the base raised to the power of n then raised again to the power of m :

$$
\begin{array}{ll}
\left(b^{2}\right)^{3}=(b \cdot b)^{3}=(b \cdot b) \cdot(b \cdot b) \cdot(b \cdot b)=b^{2 \cdot 3}=b^{6} \\
b^{1}=b ; & b^{0}=1, \text { for any } b \text { exept } 0 .
\end{array}
$$

If two different bases raised to the same power, then:

$$
\begin{gathered}
(a \cdot b)^{3}=(a \cdot b) \cdot(a \cdot b) \cdot(a \cdot b)=a \cdot a \cdot a \cdot b \cdot b \cdot b=a^{3} b^{3} \\
(a \cdot b)^{n}=a^{n} b^{n}
\end{gathered}
$$

ORDER OF OPERATIONS!!!!!!!

1	2	3	4	5	6
P	E	M	D	A	5
Parentheses (\ldots, \ldots)	Exponents a^{2}	Multiplication X	Division	Addition	Subtraction

