Positive and negative numbers. Absolute value of a number.

$$
\left\{\begin{array}{lr}
|a|=a, & \text { if } a \geq 0 \\
|a|=-a, & \text { if } a<0
\end{array}\right.
$$

Complex fractions.

Complex fractions are formed by two fractional expressions, one on the top and the other one on the bottom, for example:

$$
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{7}{9}-\frac{2}{5}}
$$

The fraction bar is a just another way to write the division sign, so we can re-write:

$$
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{2}{3}+\frac{1}{4}}=\left(\frac{1}{2}+\frac{1}{3}\right) \div\left(\frac{2}{3}+\frac{1}{4}\right)
$$

It is easy to simplify a complex fraction:

$$
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{2}{3}+\frac{1}{4}}=\left(\frac{1}{2}+\frac{1}{3}\right) \div\left(\frac{2}{3}+\frac{1}{4}\right)=\frac{\frac{3}{6}+\frac{2}{6}}{\frac{8}{12}+\frac{3}{12}}=\frac{\frac{5}{6}}{\frac{11}{12}}=\frac{5}{6} \div \frac{11}{12}=\frac{5}{6} \cdot \frac{12}{11}=\frac{5}{1} \cdot \frac{2}{11}=\frac{10}{11}
$$

GRAPHS

A graph (G) is a mathematical model consisting of a finite set of vertices (V) and a finite set of edges (E). The vertices, represented by points, may be connected by edges, represented by line segments.

Lines of the graphs- Segments

Graph

The number of segments originating from a vertex is called THE DEGREE OF THE VERTEX. In other words, the degree of a node is the number of edges touching it.

A vertex that has degree equal to zero is called an isolated vertex.

The old town of Königsberg has seven bridges:

Can you leave your home, take a walk through the town, visiting each part of the town and returning home crossing each bridge only once?

Euler (pronounced as [Oiler]) showed that the possibility of a walk through a graph, traversing each edge exactly once, depends on the degrees of the nodes.

A graph can be drawn with a single line if and ONLY if:

1. The graph is connected
2. The number of vertices with the odd degrees in the graph are 0 or 2

An Eulerian cycle, Eulerian circuit in a graph is a cycle that uses each edge exactly once and it ends in the vertex from which it started.

An Eulerian path uses each edge exactly once but it ends in a different vertex

1

5

3

4

8

\# of ODD Vertices	Implication (for a connected graph)
0	There is at least one Euler Circuit.
2	There is no Euler Circuit but at least 1 Euler Path.
more than 2	There are no Euler Circuits or Euler Paths.

