1. Positive or negative value of \boldsymbol{m} will make the following equalities true?

$$
\begin{aligned}
& |m|=m \\
& |m|=-m \\
& -m=|-m| \\
& m=|-m|
\end{aligned}
$$

$$
\begin{gathered}
m=-m \\
m+|m|=0 \\
m+|m|=2 m \\
m-|m|=2 m
\end{gathered}
$$

2. Numbers a, b and c are marked on the number line below:

Which of the following statements are true?

a. $a \cdot b<b$ or $a \cdot b>b$
b. $a \cdot b \cdot c<a$ or $a \cdot b \cdot c>a$
c. $-a \cdot c<c$ or $-a \cdot c>c$
3. Rewrite without the parenthesis:
a. $\quad a-(b-(c+4))=$
b. $x-(3-(x+6))=$
c. $a-(a-(a-10))=$
d. $c-(c-(c-d))=$

Complex fractions:

$\frac{6}{1-\frac{1}{3}}=$
$\frac{\frac{1}{2}+\frac{3}{4}}{\frac{1}{2}}=$
$\frac{1-\frac{1}{6}}{2+\frac{1}{6}}=$
$\frac{\frac{7}{10}+\frac{1}{3}}{\frac{7}{10}+\frac{1}{2}}=$

Solve the following equations:

$$
3-\frac{5}{7} t=1-\frac{3}{7} t
$$

$$
\frac{1}{8} u-2=\frac{5}{8} u+1
$$

GRAPHS

The old town of Königsberg has seven bridges:

5

Which of the Graphs have Eulierian path and wich have Eulerian Circuit?

1. G_{1}

2. G_{2}

3. G_{3}

4. G_{4}

5. G_{5}
