

Geometry

Remember vertical angles?

$$\angle 1 = \angle 2$$
$$\angle 3 = \angle 4$$

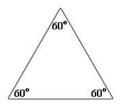
• A **transversal** is a **line** that passes through two **lines** in the same plane at two distinct points.

• The angles in matching corners are called **Corresponding Angles**.

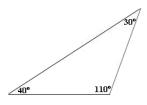
• When the lines are parallel, the

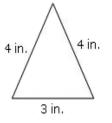
Corresponding Angles are equal

 $\angle 1 = \angle 3$

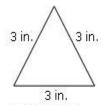

• The **angles** that are formed on opposite sides of the transversal and inside the two lines are **Alternate Interior Angles**.

• When the lines are parallel, the **Alternate Interior Angles** are equal.


 $\angle 1 = \angle 2$


Triangles:

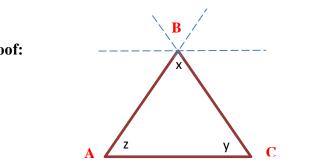
Acute triangle has all acute angles, not only 60°


Obtuse triangle has an obtuse angle.

4 in. 3 in. 5 in.

Isosceles triangle has two equal sides

Scalene triangle that has three unequal sides


Equilateral triangle has three equal sides

90⁰

Right triangle has a right angle.

Triangle properties:

Sum of interior angles of any triangle (($\forall \Delta$) is 180°. $\angle x + \angle y + \angle z = 180^{\circ}$

Proof:

In any triangle ($\nvdash \Delta$) the sum of 2 sides is always grater then the third. $(\forall \triangle ABC, AB+BC > AC)$

In any triangle,

- the largest interior angle is opposite the largest side. •
- the smallest interior angle is opposite the smallest side •
- the middle-sized interior angle is **opposite** the middle-sized side •