Addition and subtraction of fractions with unlike denominators.
Can we easily compute $\frac{2}{9}+\frac{3}{9}$ ? Let's now try to add $\frac{2}{9}$ and $\frac{2}{3}$.
$\frac{2}{9}+\frac{2}{3}$


$$
\frac{2}{9}=\frac{1}{9}+\frac{1}{9} \quad \frac{2}{3}=\frac{1}{3}+\frac{1}{3}
$$

How we can calculate?

$$
\frac{2}{9}+\frac{2}{3}=\frac{1}{9}+\frac{1}{9}+\frac{1}{3}+\frac{1}{3}
$$

- To be able to add two fractions we must rewrite them as fractions with the same denominator.
- The best choice for such common denominator is the least common multiple (LCM) of the denominators of original fractions.
- When you find the factor by which you need to multiply your denominator, remember to multiply thénumerator by the same number so that your fraction remains the same :
- For example,

$$
\frac{3}{9}+\frac{2}{3}=\frac{3}{9}+\frac{2 \times 3}{3 \times 3}=\frac{3}{9}+\frac{6}{9}=1
$$

## Multiplication of a whole number by a fraction.

$$
\frac{2}{3} \times 5=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}\left(\text { we add } \frac{2}{3} \text { to itself } 5 \text { times }\right)
$$

Of course we remember how to add fractions with the same denominator:

$$
\begin{gathered}
\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=\frac{2+2+2+2+2}{3} \\
\frac{2+2+2+2+2}{3}=\frac{2 \times 5}{3} \\
\frac{2}{3} \times 5=\frac{2 \times 5}{3}
\end{gathered}
$$

To multiply fraction by a whole number, multiply the numerator by this number

$$
\frac{a}{b} \times c=\frac{a}{b} \times \frac{c}{1}=\frac{a \times c}{b}
$$

## Multiplication of a fraction by a fraction.

Analogously, $\frac{1}{2} \times \frac{1}{3}$ means $\frac{1}{2}$ of $\frac{1}{3}$. Now, half of $1 / 3$ piece of a disk is $1 / 6$ of a disk (look at the picture below).


Notice that we could have just multiplied the denominators of $\frac{1}{2}$ and $\frac{1}{3}$.

To multiply fraction by a fraction, multiply the numerators to get the numerator for the answer, multiply denominators to get denominator for the answer.

$$
\frac{a}{b} \times \frac{c}{d}=\frac{a \times c}{b \times d}
$$

## Reciprocal Fractions:

Two fractions are called reciprocal if their product is equal to 1 .

$$
\frac{3}{5} \times \frac{5}{3}=1, \quad \frac{a}{b} \times \frac{b}{a}=1
$$

If I multiply two fractions (let say $\frac{1}{15}$ by $\frac{1}{9}$ ), I will find one ninth part of one fifteenth (or one fifteenth part of one ninth).

$$
\frac{1}{15} \cdot \frac{1}{9}=\frac{1}{15} \div 9=\frac{1}{15 \cdot 9}=\frac{1}{135}
$$



To divide one fraction by another (if they have common denominator) you need to divide only their numerators

$$
\frac{3}{4}: \frac{1}{4}=3: 1=3
$$

$$
\frac{12}{27}: \frac{6}{27}=12: 6=2
$$


$1: \frac{1}{9}=9$

$3: \frac{1}{9}=27$


To divide a number (or a fraction) by a fraction we should multiply by its

$$
\text { reciprocal } \quad a: \frac{c}{d}=a \cdot \frac{d}{c}
$$



$$
\begin{gathered}
\frac{3}{9}: \frac{1}{3}=\frac{3}{9}: \frac{3}{9}=1=\frac{3}{9} \times \frac{9}{3} \\
\frac{3}{9}<\frac{1}{18}=\frac{3 \times 18}{9 \times 18}: \frac{9 \times 1}{18 \times 9}=\frac{3 \times 18}{9 \times 1}=\frac{3}{9} \times \frac{18}{1}
\end{gathered}
$$

We brought both fractions to the same denominator "9•18"

Now we can just divide the numerators

When you do that, it turns out that we are multiplying the original fraction $\frac{3}{9}$ (dividend) by the reciprocal of the divisor $\frac{18}{1}$

