Homework for Lesson № 12

1 Write expressions to solve the word problems. Make any necessary drawings.
5 identical boxes hold \boldsymbol{x} candies. How many candies are in 9 such boxes?

The total for \boldsymbol{x} identical candies is \boldsymbol{b} dollars. Little Joe spent \boldsymbol{d} dollars on these candies. How many did he buy?
candies are in 9 such boxes?

A tape transporter moves 20 meters in 4 seconds. How far does it move in \boldsymbol{w} seconds? candies are in 9 such boxes?

There are \boldsymbol{x} oranges in each plate on the table. Altogether there are \boldsymbol{q} oranges. How many plates are on the table?
candies are in 9 such boxes?

Divide with or without a remainder:

3

Find the missing values for each parallelepiped:

$$
\boldsymbol{V}=
$$

\qquad

$$
\boldsymbol{V}=
$$

\qquad

$\boldsymbol{V}=63 \mathrm{~cm}^{3}$

4

Convert:

$$
1 \mathrm{dm}^{3}=10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}=1000 \mathrm{~cm}^{3}
$$

$2 \mathrm{dm}^{3}=$ \qquad cm^{3}
$4 \mathrm{dm}^{3}=$ \qquad cm^{3}
\qquad $\mathrm{dm}^{3}=5000 \mathrm{~cm}^{3}$
$6 \mathrm{dm}^{3}=$ \qquad cm^{3}
\qquad $\mathrm{dm}^{3}=8000 \mathrm{~cm}^{3}$
\qquad $\mathrm{dm}^{3}=7000 \mathrm{~cm}^{3}$
$9 \mathrm{dm}^{3}=$ \qquad cm^{3}

$10 \mathrm{dm}^{3}=$ \qquad cm^{3}
$2 \times 8 \times 10,000=$ \qquad
$50 \times 70 \times 100=$ \qquad
$300 \times 90: 10=$ \qquad
$5600: 80 \times 10=$ \qquad
$28000: 70: 100=$ \qquad
$50 \times 80 \times 10=$ \qquad

7
(1.) $\boldsymbol{m} \times 4$
(1.) $5 \times \boldsymbol{X}$
(2) $\boldsymbol{z}+\boldsymbol{p}$
(2) $12 \times y$
(3) (1) (2)
(3) (1) (2)

8 Solve the equations in your notebook. Check your answers and copy them here once they are correct.
$81: y=9$
$x-25=40$
$5 w=35$
$\boldsymbol{q}+12=201$
$y=$ \qquad
$x=$ \qquad
$w=$ \qquad
$\boldsymbol{q}=$ \qquad

9 Remove parentheses. Check your equalities for $\boldsymbol{a}=1$ and $\boldsymbol{b}=2$.
$300-(\boldsymbol{a}+\boldsymbol{b})=$ \qquad
$29-(5+\boldsymbol{b})=$ \qquad
$70-(\boldsymbol{b}-\boldsymbol{a})=$ \qquad
$65-(\boldsymbol{a}+\boldsymbol{b}+5)=$ \qquad
$300-(1+2)=$ \qquad
$29-(5+2)=$ \qquad
$70-(2-1)=$ \qquad
$65-(1+2+5)=$ \qquad

10

Set $\mathbf{A}=\{a, 2, x, \square, 6\} \quad$ Set $\mathbf{B}=\{p, x, 2, \bigcirc\}$.
Make a Venn Diagram for these two sets.
$A \cap B=$ \qquad
$A \cup B=$ \qquad

11 Complete the statements according to the drawing.
\qquad
$[M N) \cap \mathbf{A B}=$ \qquad
$[N M) \cap \mathrm{AB}=$ \qquad
$[M N) \cap[N Q)=$ \qquad

$[A Q) \cap[Q B)=$ \qquad
$[A Q] \cap[Q B]=$ \qquad
$[\mathrm{AB}] \cap[M N]=$ \qquad

12 Measure the angles below with a protractor:

13

Count the number of operations in each expression including the hidden operations.

Expression	Number of operations
$12 \boldsymbol{y}$	
$42-(\boldsymbol{w}+3)$	
$2 \boldsymbol{x}-3 \boldsymbol{y}$	
$4 \boldsymbol{q}-10$	
$3+7-\boldsymbol{w}+(\boldsymbol{m}-3)$	

Operations of multiplication
might be hidden
in an expression:

$$
7 x=7 \cdot x
$$

14

Rex is 2 kg heavier than Fluffy and 9 kg lighter than Barbos. Which among Fluffy and Barbos is heavier and how much?
\qquad is \qquad kg heavier.

15 Three mice brothers were playing soccer, Jake the Mouse, Little Joe and Pop Eye. One of them accidentally broke car window. When the cat who owned the car came, they tried to explain what happened:

JM: LJ broke the window.
PY: I did not break the window.
Only one of the mice told the truth.
Who broke the window?

On each plot construct a second angle so that the intersection of the two angles would be a ...
a). ... point;

c). ... triangle;

b). ... ray;

d). ... line segment.

17 Andrea, Becky, and Carol are sitting around a circular table.

 Color the same color the tables where the girls are sitting in the same order.

18 To solve the riddle fill in the first table values for \boldsymbol{x}; then in the second table arrange the letters in the decreasing order for \boldsymbol{x}.

\boldsymbol{a}	1	2	3	4	5	6	7	8	9
\boldsymbol{x}									
	E	N	P	R	O	P	I	U	C

\boldsymbol{x}									
Letter									

