Homework for Lesson № 4

1 Compare the sets A	A and B .		
Is there an element in the	e set $m{A}$ that is not in	cluded in set B ?	
Is there an element in the	e set $m{B}$ that is not in	cluded in set A?	
A = {含, 豐, 罝, 怠	}	$oldsymbol{B} = \{ ext{ \text{\enticles \end{\text{\\entitel{\text{\texi{\text{\texi{\text{\tex{\tex$	
2 Construct a set <i>A</i> to	that is equal to set $m{I}$	$\mathbf{D} = \{ \odot, \odot, \mathbf{A} \}.$	
A =			
Construct a set \boldsymbol{B} that is	not equal to set D.		
B =			
3 Construct all six p	ossible listings of th	ne elements of the set $Q = \{a, b, a\}$	c}.
1. <u>a, b, c</u>	2	3	
4	5	6	
Construct all six possible	e listings of the elen	nents of the set $Q = \{ \heartsuit, \odot, \bowtie \}$.	
1	2	3	
4	5	6	
4 Find the correct no	otation for an empty	v set:	
A. {Ø}	B. Ø	C. 	D. -{}

A set of ... _____ is an empty set.

Solve the equations by undoing sequential operations and check you results.

5

Use rectangles to visualize the following equations and to solve them:

32 q

 $q \cdot 8 = 32$

35: y = 7

 $6 \times \mathbf{z} = 42$

t: 8 = 9

z = ____

t = ____

Number the operations and compute:

8 - (7 - 2) =

48: (4 + 2) =

24:4+2=

19 - (12 + 3) = $21 - 6 \times 3 =$

 $(21-6) \times 3 =$

48 : 6 × 3 = ____

60:(10+5)=_____

60:10 + 5 = ____

8 Solve the equations in your notebook and copy the answer here:

$$y + 119 = 476$$

$$239 - z = 215$$

$$x - 287 = 324$$

9 The number of elements are in the set of ...

days of week	is
letters in the English alphabet	is
tails of Little Joe	is
stars in the solar system	is
horses living on the moon	is

10 Place the \bigcirc , ∞, \forall , \bigstar , \Rightarrow on the diagram of set C if ...

$$\bigcirc \in C$$

$$\forall \in C$$

$$\infty \notin C$$

$$\Rightarrow$$
 \in C

$$\bigstar \in C$$

11 Evaluate the claims as TRUE (\square) of FALSE (\square)

$$q = Circ(P, 3 cm)$$

$$\square$$
 $q = Circ(W, 3 cm)$

$$\square$$
 |**WP**| = 3 cm

$$\square$$
 |**VW**| = 3 cm

$$\Box$$
 $X \notin q$

$$\square$$
 $N \in q$

$$\square$$
 $W \in q$

$$\square$$
 |XW| < 4 cm

$$\square$$
 $q = \emptyset$

$$\square$$
 |**ZW**| < 3 cm

Select appropriate drawings and complete t	hem to solve the word	problems:
There are w neons in a fish tank. In another tank there are q more neons than in the first. How		
many neons are in both tanks?		
There are 6 turtles in each of <i>n</i> cages. How many turtles are there in total?		
many turties are there in total;		
		
Lisa saved w dollars towards buying a new bike.		
She needs to save q more dollars to purchase the		
bike. How much does it cost?		
<i>m</i> books are distributed evenly among <i>q</i>shelves. How many books are on each of these		
shelves?		
Little Joe and Foxy Tail are here again. Little always lies.	Joe always tells the truth	, Foxy Tail
LJ: I like to eat books.		
ET. One of us likes to get book and the other	Incort figure from	~ L IVA/ 2D
FT: One of us likes to eat book, and the other does not.	Insert figure fror HW 4 mice eatir	
		-g .500110
Does Foxy Tail like to eat books?		

A book was chewed on. Can you tell which of the brothers ate it? _____

Use a compass to plot the required circles. Use the grid as you scale.

Remember, there are 2 cells per centimeter.

$$s = Circ(A, 4 cm)$$
 $d = Circ(B, 3 cm)$

$$z = Circ(A, 5 cm)$$
 $f = Circ(C, 4 cm)$

В

 \overline{A}

C

Find the result without cumbersome calculations:

$$534 - 21 + 642 - 37 + 21 + 1 - 534 + 37 - 642 =$$

$$842 - 621 + 318 - 1 + 7 + 621 - 842 - 318 =$$

$$1257 - x - 219 + 328 - 1 + 9 + x - 1257 + 219 - 328 =$$

Compare: **16**

$$28 + b \square 28 + (b + 1)$$
 $28 + b \square 28 + (b - 1)$

$$28 + \mathbf{b} \square 28 + (\mathbf{b} - 1)$$

$$32 + 1 \square 32 + (1 + 2)$$

$$32 - x \square 32 - (x - 2)$$

$$43 - (c + 4) \sqcup 43 - c$$

$$32 - x \square 32 - (x - 2)$$
 $43 - (c + 4) \square 43 - c$ $58 - (p - 6) \square 58 - p$

Rank the children of the age line:

Angie is older than Arthur

Young	Old

- Bob is younger than Katie
- Carl is the oldest
- Artur is older than Katie

18 Be attentive and use the help of your notebook cover to convert:

$$200 \text{ cm}^2 = \underline{\qquad} \text{ dm}^2$$

$$300 \text{ cm} = _{m} \text{ m}$$

$$6 \text{ dm}^2 = \underline{\qquad} \text{ cm}^2$$

$$500 \text{ cm}^2 = \underline{\qquad} \text{ dm}^2$$

$$6 \text{ m} = \underline{\hspace{1cm}} \text{dm}$$

900 cm
$$^2 = _{---} dm^2$$

$$300 \text{ cm} = _{m} \text{ m}$$

19 Calculate:

20 Simplify: