Rotational Motion

Angle (in radians): length of ark over radius

$$
\Delta \alpha=\frac{\Delta l_{a r c}}{R}
$$

Angular velocity (units are $1 / \mathrm{s}$):

$$
\varpi=\frac{\Delta \alpha}{\Delta t}
$$

It is related to regular (linear) speed of rotational motion as:

$$
v=\frac{\Delta l_{a r c}}{\Delta t}=\varpi R
$$

Homework

A propeller of regional airplane ATR-72 spins at 1200 RPM (revolutions per minute).
a) Find the speed of propeller's tip with respect to the aircraft. Propeller radius is $\mathrm{R}=2 \mathrm{~m}$. Don't forget to convert units of ω to $1 / \mathrm{s}$
a) Find the total speed of the propeller's tip with respect to air, if the speed of the airplane is $v=500 \mathrm{~km} / \mathrm{hr}$. Pay attention to directions of rotational and translational motion!

