Problem 1 (from MIT text book)

Two tiny conducting balls of identical mass m and identical charge q hang from nonconducting threads of length l. Each ball forms an angle θ with the vertical axis, as shown in Figure 2.15.9. Assume that θ is so small that $\tan \theta \approx \sin \theta$.

(a) Show that, at equilibrium, the separation between the balls is

$$
r=\left(\frac{q^{2} \ell}{2 \pi \varepsilon_{0} m g}\right)^{1 / 3}
$$

This is a rather difficult problem from the math point of view, because you still do not know the sin or tan functions. But the condition that

$$
\tan \theta \approx \sin \theta
$$

is equivalent to say that the gravitation force is much greater than the Coulomb force, i.e.,

$$
m g \gg q^{2} / 4 \pi \varepsilon_{0} r^{2}
$$

Use this simplification to derive the above answer. You can solve this problem! It combines both the mechanics and electrostatics.

