Instantaneous Velocity and Speed

Earlier, we defined Average velocity: between time moments $\boldsymbol{t}_{\boldsymbol{i}}$ and $\boldsymbol{t}_{\boldsymbol{f}}$:

x_{i}, x_{f} - initial and finite positions. displaceme nt : $\Delta x=x_{f}-x_{i}$ travel time : $\Delta \mathrm{t}=t_{f}-t_{i}$

Instantaneous velocity tells you how fast an object moves right now, at specific time moment t . The formula is the same as above but $\Delta \mathrm{t}$ must be as small as possible. Similarly we can define instantaneous speed.

Acceleration

- Acceleration:

Standard units of acceleration : m/s ${ }^{2}$

- If there were no air resistance, all objects in Earth gravity would fall with the same acceleration, $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
(directed downward)

Galileo Galilei's experiment in Pisa (possibly, a legend)

Homework

Problem 1.

A ball is thrown vertically upwards from the ground level with initial speed $v_{0}=30 \mathrm{~m} / \mathrm{s}$. Gravitational acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$, and is directed downward.
Find the time after which the ball will reach the highest point of its flight.

Problem 2.

James Bond's favorite car is called Austin Martin DB5. It can reach speed $100 \mathrm{~km} / \mathrm{hr}$ in 8 seconds. Some of his girlfriends drive Ferrari Spider that can reach speed 100 $\mathrm{km} / \mathrm{hr}$ in 3.3 seconds. Find acceleration of each of these cars (in m/s ${ }^{2}$).

