Classwork 6
 Trigonometry Continued: $\tan (\alpha)$ and Trigonometric Identities

Math 7a

October 28, 2017

1 Review Homework 5

2 Vector Components

Figure 1: Sine and Cosine as vector components.

Remembering from last time:

$$
\sin (\alpha)=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{5}{\sqrt{5^{2}+6^{2}}}
$$

$$
\cos (\alpha)=\frac{\text { adjacent side }}{\text { hypotenuse }}=\frac{6}{\sqrt{5^{2}+6^{2}}}
$$

Trigonometric Functions							
Function	Notation	Definition	0	30	45	60	
Sine	$\sin (\alpha)$	$\frac{\text { opposite side }}{\text { hypotenuse }}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	
Cosine	$\cos (\alpha)$	$\frac{\text { adjacent side }}{\text { hypotenuse }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	

2.1 Problems

1. A high-schooler bikes 5 km north and then turns right and bikes for another 12 km to the east. What is the displacement of the high-schooler from the original location?
2. The same high-schooler now bikes 5 km north, turns right and bikes for 24 km east, after which turns left and bikes for an additional 2 km . What is the displacement of the high-schooler from the original location now?
3. If vector \vec{v} has magnitude 2 and vector \vec{u} has magnitude 3 , and the angle between them is 30 degrees, what is the magnitude of $\vec{v}+\vec{u}$?

3 Tangent $\tan (\alpha)$

Now we can also define the 3rd trigonometric ratio (see Figure 2):

$$
\tan (\alpha)=\frac{\sin (\alpha)}{\cos (\alpha)}=\frac{\text { opposite side/hypotenuse }}{\text { adjacent side/hypotenuse }}=\frac{\text { opposite side }}{\text { adjacent side }}=\frac{4}{3}=\frac{8}{6}=\frac{12}{9}
$$

Trigonometric Functions							
Function	Notation	Definition	0	30	45	60	
Sine	$\sin (\alpha)$	$\frac{\text { opposite side }}{\text { hypotenuse }}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	
Cosine	$\cos (\alpha)$	$\frac{\text { adjacent side }}{\text { hypotenuse }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	
Tangent	$\tan (\alpha)$	$\frac{\text { opposite side }}{\text { adjacent side }}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

3.1 Problems

1. If a right triangle $\triangle A B C$ has sides $A B=3 * \sqrt{3}$ and $B C=9$, and side $A C$ is the hypotenuse, find all 3 angles of the triangle.

Figure 2: Tangent.

2. A high-schooler bikes 10 km north and then makes a right turn and bikes for $x \mathrm{~km}$ to the east. If the displacement vector makes 30 degree angle with the north, what is x ? That is how many km did our high-schooler bike to the east?
3. Let vectors $\vec{v}=(3-\sqrt{3}, \sqrt{3} / 2)$ and $\vec{u}=(\sqrt{3}-2, \sqrt{3} / 2)$. Find the angle vector $\vec{v}+\vec{u}$ makes with the x-axis.

4 Trigonometric Identities and Laws of Sines and Cosines

The most prominent trigonometric identity is given as:

$$
\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1
$$

Let us try to derive it:

1. A right triangle with hypotenuse c and an angle α is given. Express the remaining 2 sides (a and b) of triangle using only c and α.
2. Using expressions obtained for a and b, express the hypotenuse c and simplify.

Law of Sines: Given a triangle $\triangle A B C$ with sides a, b, and c (see Figure 3), the following is always true:

$$
\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}
$$

Figure 3: Law of Sines

