$\begin{array}{c} {\rm Classwork}\; 6\\ {\rm Trigonometry}\; {\rm Continued:}\; tan(\alpha) \; {\rm and}\; {\rm Trigonometric}\\ {\rm Identities} \end{array}$

Math $7\mathrm{a}$

October 28, 2017

- 1 Review Homework 5
- 2 Vector Components

Remembering from last time:

$$sin(\alpha) = \frac{\text{opposite side}}{\text{hypotenuse}} = \frac{5}{\sqrt{5^2 + 6^2}}$$

	COS	$s(\alpha) = \frac{\text{adjacer}}{\text{hypot}}$	$\frac{\text{nt side}}{\text{enuse}} =$	$=\frac{6}{\sqrt{5^2+1}}$	$\overline{6^2}$		
Trigonometric Functions							
Function	Notation	Definition	0	30	45	60	
Sine	$\sin(\alpha)$	opposite side hypotenuse	0	$\left \begin{array}{c} \frac{1}{2} \end{array} \right $	$\left \frac{\sqrt{2}}{2} \right $	$\left \frac{\sqrt{3}}{2} \right $	
Cosine	$\cos(\alpha)$	adjacent side hypotenuse	1	$\left \frac{\sqrt{3}}{2} \right $	$\left \frac{\sqrt{2}}{2} \right $	$\left \begin{array}{c} \frac{1}{2} \end{array} \right $	

2.1 Problems

- 1. A high-schooler bikes 5 km north and then turns right and bikes for another 12 km to the east. What is the displacement of the high-schooler from the original location?
- 2. The same high-schooler now bikes 5 km north, turns right and bikes for 24 km east, after which turns left and bikes for an additional 2 km. What is the displacement of the high-schooler from the original location now?
- 3. If vector \overrightarrow{v} has magnitude 2 and vector \overrightarrow{u} has magnitude 3, and the angle between them is 30 degrees, what is the magnitude of $\overrightarrow{v} + \overrightarrow{u}$?

3 Tangent $tan(\alpha)$

Now we can also define the 3rd trigonometric ratio (see Figure 2):

$tan(\alpha) = \frac{sin}{co}$	$sin(\alpha)$ _	opposite side/hypotenuse _	opposite side	_ 4 _	_ 8 _	12
	$\overline{cos(\alpha)}$ –	adjacent side/hypotenuse	adjacent side	$-\overline{3}$ -	$-\overline{6}$ -	9

Trigonometric Functions						
Function	Notation	Definition	0	30	45	60
Sine	$\sin(\alpha)$	opposite side hypotenuse	$\ 0$	$\left \begin{array}{c} \frac{1}{2} \end{array} \right $	$\left \frac{\sqrt{2}}{2} \right $	$\left \frac{\sqrt{3}}{2} \right $
Cosine	$\cos(\alpha)$	adjacent side hypotenuse	$\parallel 1$	$\left \frac{\sqrt{3}}{2} \right $	$\left \frac{\sqrt{2}}{2} \right $	$\left \begin{array}{c} \frac{1}{2} \end{array} \right $
Tangent	$tan(\alpha)$	$\frac{\text{opposite side}}{\text{adjacent side}}$	0	$\left \begin{array}{c} 1 \\ \sqrt{3} \end{array} \right $	1	$\sqrt{3}$

3.1 Problems

1. If a right triangle $\triangle ABC$ has sides $AB = 3 * \sqrt{3}$ and BC = 9, and side AC is the hypotenuse, find all 3 angles of the triangle.

- 2. A high-schooler bikes 10 km north and then makes a right turn and bikes for x km to the east. If the displacement vector makes 30 degree angle with the north, what is x? That is how many km did our high-schooler bike to the east?
- 3. Let vectors $\overrightarrow{v} = (3 \sqrt{3}, \sqrt{3}/2)$ and $\overrightarrow{u} = (\sqrt{3} 2, \sqrt{3}/2)$. Find the angle vector $\overrightarrow{v} + \overrightarrow{u}$ makes with the *x*-axis.

4 Trigonometric Identities and Laws of Sines and Cosines

The most prominent trigonometric identity is given as:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1.$$

Let us try to derive it:

- 1. A right triangle with hypotenuse c and an angle α is given. Express the remaining 2 sides (a and b) of triangle using only c and α .
- 2. Using expressions obtained for a and b, express the hypotenuse c and simplify.

Law of Sines: Given a triangle $\triangle ABC$ with sides a, b, and c (see Figure 3), the following is always true:

$$\frac{a}{\sin\left(A\right)} = \frac{b}{\sin\left(B\right)} = \frac{c}{\sin\left(C\right)}.$$

Figure 3: Law of Sines

