Homework 5 Basic Trigonometry: $sin(\alpha)$ and $cos(\alpha)$

Math7a

October 25, 2017

Trigonometric Functions						
Function	Notation	Definition	0	30	45	60
Sine	$\Big\ \ sin(\alpha)$	opposite side hypotenuse	0	$\left \begin{array}{c} \frac{1}{2} \end{array} \right $	$\left \frac{\sqrt{2}}{2} \right $	$\left \frac{\sqrt{3}}{2} \right $
Cosine	$\ \cos(\alpha)$	adjacent side hypotenuse	1	$\left \frac{\sqrt{3}}{2} \right $	$\frac{\sqrt{2}}{2}$	$\left \begin{array}{c} \frac{1}{2} \end{array} \right $

- 1. Which one is greater?
 - (a) 0 or sin(0)
 - (b) 1 or sin(30)
 - (c) sin(45) or cos(45)
 - (d) cos(60) or sin(30)
- 2. A tree casts a 60 m long shadow when the angle of elevation of the sun is 30°. How tall is the tree? [Angle of elevation is the angle that line from tip of shadow on ground to top of tree makes with the horizontal.]
- 3. A ladder of length L is resting on a ledge whose height is half of the ladder's length. The ladder makes a 45° angle with the ground.
 - (a) How long is the portion of the ladder between the ground and the point of contact of ledge and ladder? [indicated by a long dashed arrow]
 - (b) At what height is the top of ladder above the ledge? [indicated by short dashed arrow]

- 4. A cruise ship travels north for 3 miles and then north-west for another 3 miles. How far will it end up from its original position? [North-end is the direction that bisects the angle between north and east.]
- 5. We are given a triangle ΔABC . We know measures of two of its sides: AB and AC, and the angle between them $\angle BAC$. Can we find area of ΔABC ?
- 6. What is the area of an equilateral triangle of side 5? [Make sure to use a trigonometric function.]

- 7. What is the area of a regular pentagon inscribed in a circle of radius 10? [Make sure to use a trigonometric function.]
- 8. Consider a parallelogram ABCD with AB = 3, AD = 2 and $\angle BAD = 30^{\circ}$. Find the lengths of diagonals of this parallelogram. [Hint: introduce a coordinate system so that \overrightarrow{AD} goes along the x-axis. For the diagonal AC write the vector \overrightarrow{AC} as a sum of two vectors, decompose \overrightarrow{AB} and \overrightarrow{BC} into horizontal and vertical components.]