Homework 5
Basic Trigonometry: $\sin (\alpha)$ and $\cos (\alpha)$
Math 7a
October 25, 2017


$$
\begin{aligned}
& \sin (\alpha)=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{4}{5}=\frac{8}{10}=\frac{12}{15} \\
& \cos (\alpha)=\frac{\text { adjacent side }}{\text { hypotenuse }}=\frac{3}{5}=\frac{6}{10}=\frac{9}{15}
\end{aligned}
$$

| Trigonometric Functions |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Function | Notation | Definition | 0 | 30 | 45 | 60 |  |
| Sine | $\sin (\alpha)$ | $\frac{\text { opposite side }}{\text { hypotenuse }}$ | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ |  |
| Cosine | $\cos (\alpha)$ | $\frac{\text { adjacent side }}{\text { hypotenuse }}$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ |  |

1. Which one is greater?
(a) 0 or $\sin (0)$
(b) 1 or $\sin (30)$
(c) $\sin (45)$ or $\cos (45)$
(d) $\cos (60)$ or $\sin (30)$
2. A tree casts a 60 m long shadow when the angle of elevation of the sun is $30^{\circ}$. How tall is the tree? [Angle of elevation is the angle that line from tip of shadow on ground to top of tree makes with the horizontal.]
3. A ladder of length $L$ is resting on a ledge whose height is half of the ladder's length. The ladder makes a $45^{\circ}$ angle with the ground.
(a) How long is the portion of the ladder between the ground and the point of contact of ledge and ladder? [indicated by a long dashed arrow]
(b) At what height is the top of ladder above the ledge? [indicated by short dashed arrow]

4. A cruise ship travels north for 3 miles and then north-west for another 3 miles. How far will it end up from its original position? [North-end is the direction that bisects the angle between north and east.]
5. We are given a triangle $\triangle A B C$. We know measures of two of its sides: $A B$ and $A C$, and the angle between them $\angle B A C$. Can we find area of $\triangle A B C$ ?
6. What is the area of an equilateral triangle of side 5? [Make sure to use a trigonometric function.]
7. What is the area of a regular pentagon inscribed in a circle of radius 10? [Make sure to use a trigonometric function.]
8. Consider a parallelogram ABCD with $\mathrm{AB}=3, \mathrm{AD}=2$ and $\angle B A D=30^{\circ}$. Find the lengths of diagonals of this parallelogram. [Hint: introduce a coordinate system so that $\overrightarrow{A D}$ goes along the x-axis. For the diagonal $A C$ write the vector $\overrightarrow{A C}$ as a sum of two vectors, decompose $\overrightarrow{A B}$ and $\overrightarrow{B C}$ into horizontal and vertical components.]
