Math 6b/c: Homework 25 Homework #25 is due May 6.

Geometric progression

The n^{th} term: $b_n = b_1 \times q^{n-1}$

Sum of the first n terms: $S = \frac{b_1 q^n - b_1}{1 - q} = \frac{b_1 (1 - q^n)}{1 - q}$

Sum of infinite geometric progression, 0 < q < 1, $S = \frac{b_1}{1-q}$

System linear equations, solved by substitution

- 1. Simplify both equations.
- 2. From one of the 2 equations, express one of the unknowns (for example, x) in terms of the other one (x = ...).
- 3. Substitute the obtained expression in the other equation you have an equation with one unknown (linear equation for y).
- 4. Solve this equation (find y).
- 5. Substitute the value for the second unknown (the y-value) back in the first equation (in x = ...).

Homework

1. Solve by using substitution:

a)
$$\begin{vmatrix} x = 5\\ 20x + 5y = 100 \end{vmatrix}$$

b)
$$\begin{vmatrix} -8x + y &= -4 \\ -21x + 2y &= -13 \end{vmatrix}$$

c)
$$\begin{vmatrix} 7x - 3y = 27\\ 5x - 6y = 0 \end{vmatrix}$$

d)
$$\begin{vmatrix} 2(x-2) - 3(x+y) &= 3\\ (x+1)(y-2) &= xy - 9 \end{vmatrix}$$

e)
$$\frac{\frac{2x-1}{5} + \frac{3y-2}{4}}{\frac{3x+1}{5} - \frac{3y+2}{4}} = 0$$

2. Solve the system equations both by substitution and graphically:

a.
$$\begin{vmatrix} 3x - 2y = -1 \\ x + y = 3 \end{vmatrix}$$

b.
$$\begin{vmatrix} x + 3y = -4 \\ x - y = 0 \end{vmatrix}$$

- 3. The sum of the digits in a two-digit number is 9. The ratio of this number and the number with switched digits is $\frac{3}{8}$. Find the number.
- 4. In an infinite geometric progression, the nth term is defined as $b_n = 6\left(\frac{1}{3}\right)^n$. Find the sum.

Optional: Sketch the function $y = 6\left(\frac{1}{3}\right)^x$ for the first few terms – what do you observe? 5. Find the second term in the geometric progression for which:

 $b_2 + b_5 - b_4 = 10$ and $b_3 + b_6 - b_5 = 20$.