Math 6b/c: Homework 17
Homework \#17 is due February 25.

Counting

We use $|A|$ to denote the number of elements in a set A (if this set is finite). For example, if $A=$ $\{a, b, c, \ldots, z\}$ is the set of all letters of the English alphabet, then $|A|=26$.

If we have two sets that do not intersect, then $|A \cup B|=|A|+|B|$: if there are 13 girls and 15 boys in the class, then the total is 28 .

If the sets do intersect, the rule is more complicated:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Product Rule

If we need to choose a pair of values, and there are a ways to choose the first value and b ways to choose the second, then there are $a b$ ways to choose the pair.

For example, a position on a chessboard is described by a pair like $f 4$; there are 8 possible choices for the letter, and 8 possible choices for the digit, so there are $8 \times 8=8^{2}=64$ possible positions.

It works similarly for triples, quadruples, ... For example, if we toss a coin, there are 2 possible outcomes, heads (H) or tails (T). If we toss a coin 4 times, the result can be written by a sequence of four letters, e.g. HTHH; since there are 2 possibilities for each of the letters, there are $2 \times 2 \times 2 \times 2=2^{4}=16$ possible sequences.

Homework

1. Let $A=[1,3]=\{x \mid 1 \leq x \leq 3\}, B=\{x \mid x \geq 3\}, C=\{x \mid x \leq 1.5\}$. Draw on a number line the following sets (one number line per set):
(a) \bar{A}
(b) \bar{B}
(c) \bar{C}
(d) $A \cap B$
(e) $A \cap C$
(f) $A \cap(B \cup C)$
(g) $A \cap B \cap C$
2. Long ago, in some town a phone number consisted of a letter followed by 3 digits (e.g.

K651). How many possible phone numbers could there be? [Note that digits could be zero, i.e. X 000 is allowed.]
3. If we roll 3 dice (one red, the other white, and the third black), how many possible combinations are there? How many combinations give the sum of values to be exactly 4 ?
4. Using a Venn diagram:
(a) explain why $\overline{A \cap B}=\bar{A} \cup \bar{B}$. Does it remind you of one of the logic laws we had discussed before?
(b) Do the same for $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
5. In this problem, we use $|A|$ to denote the number of elements in a finite set A. We know that for two sets A, B, we have $|A \cup B|=|A|+|B|-|A \cap B|$
(a) Can you come up with a similar rule for three sets?, that is write a formula for $|A \cup B \cup C|$ which uses $|A|,|B|,|C|,|A \cap B|,|A \cap C|,|B \cap C|$
6. In a class of 33 students, 12 are girls, 10 play soccer, and 10 play chess. Moreover, it is known that 6 of the soccer players are girls, that 2 of the chess players also play soccer, and that there is exactly one girl who plays both chess and soccer. Finally, 4 girls play neither soccer nor chess. Can you figure out how many boys play soccer, chess, neither, both?

