Math 6b/c: Homework 16
Homework \#16 is due February 11.

Sets

By the word set, we mean any collection of objects: numbers, letters, etc. Most of the sets which we consider will consist either of numbers or points in the plane. Objects of the set are usually referred to as elements of this set.
Sets are usually described in one of two ways:

- By explicitly listing all elements of the set. In this case, curly brackets are used, e.g. $\{1,2,3\}$
- By giving some conditions, e.g. "set of all numbers satisfying equation $x^{2}>2$ ". In this case, the following notation is used: $\{x \mid \ldots \ldots\}$, where dots stand for some condition (equation, inequality, etc.) involving x and where all x satisfy this condition. For example, $\left\{x \mid x^{2}>2\right\}$ means "set of all x such that $x^{2}>2$ ".
Other notations:
$x \in A$ means " x is in A ", or " x is an element of A "
$x \notin A$ means " x is not in A "
$A \cup B$: union of A and B. It consists of all elements which are in either A or B (or both):
$A \cup B=\{x \mid x \in A O R x \in B\}$

$A \cap B$: intersection of A and B. It consists of all elements which are in both A and B :

$$
A \cap B=\{x \mid x \in A A N D x \in B\}
$$

\bar{A} : complement of A, i.e. the set of all elements which are not in $A, \bar{A}=\{x \mid x \notin A\}$ $A \subset S, A$ is a subset of S, all elements of A are elements of S. $A=\emptyset$, an empty set. A has no elements.

DeMorgan's laws: $\overline{A \cup B}=\bar{A} \cap \bar{B}, \overline{A \cap B}=\bar{A} \cup \bar{B}$

Homework

1. If Al comes to a party, Betsy will not come. Al never comes to a party where Charley comes. And either Betsy or Charley (or both) will certainly come to the party.
Based on all of this, can you explain why it is impossible that Al comes to the party?
2. Let
$A=$ set of all people who know French
$B=$ set of all people who know German
$C=$ set of all people who know Russian
Describe in words the following sets:
(a) $A \cap B$
(b) $A \cup(B \cap C)$
(c) $(A \cap B) \cup(A \cap C)$
(d) $C \cap \bar{A}$.
3. Let us take the usual deck of cards. As you know, there are 4 suits: hearts, diamonds, spades and clubs, 13 cards in each suit.
Denote:
$H=$ set of all hearts cards
$Q=$ set of all queens
$R=$ set of all red cards
Describe by formulas (such as $H \cap Q$) the following sets:
all red queens
all black cards
all cards that are either hearts or a queen
all cards other than red queens
How many cards are there in each set?
4. In a class of 25 students, 10 students know French, 5 students know Russian, and 12 know neither. How many students know both Russian and French?
5. Draw the following sets on the number line:
(a) Set of all numbers x satisfying $x \leq 2$ and $x \geq-5$;
(b) Set of all numbers x satisfying $x \leq 2$ or $x \geq-5$;
(c) Set of all numbers x satisfying $x \leq-5$ or $x \geq 2$.
6. For each of the sets below, draw it on the number line and then describe its complement:
$\begin{array}{lll}\text { (a) }[0,2] & \text { (b) }(-\infty, 1] \cup[3, \infty) & \text { (c) }(0,5) \cup(2, \infty) \text {, where }\end{array}$
$[a, b]=\{x \mid a \leq x \leq b\}$ is the interval from a to b (including endpoints), $(a, b)=\{x \mid a<x<b\}$ is the interval from a to b (not including endpoints), $[a, \infty)=\{x \mid a \leq \mathrm{x}\}$ is the half-line from a to infinity (including a), $(a, \infty)=\{x \mid a<x\}$ is the half-line from a to infinity (not including a)
