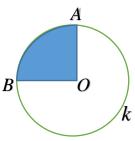
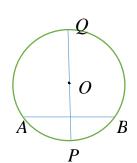
Math 6b/c: Homework 11

Homework #11 is due December 17, 2017.


Geometry


Central angle and the defined arc: An angle which has its vertex at the center of a circle and which rays are radii of the circle is called a central angle. The arc enclosed by this angle has the same measure as the angle:

$$\angle$$
 AOB = 45⁰, arc \triangle AB = 45 arc⁰ (arc degrees).

Diameter perpendicular to a chord: If k(O, r) is a circle in which the chord AB is perpendicular to the diameter PQ, then the diameter is also a bisector of AB, e.g. point $M = PQ \cap AB$ is a midpoint of AB, AM = MB.

The opposite is also true, if the diameter is a bisector of a chord AB, then the diameter is perpendicular to the chord, $PQ \perp AB$.

0

В

Homework

- 1. Two concentric circles, where the circles have the same center and one has a larger radius, are crossed by a line at consecutive points A, B, C, and D. Prove that AB = CD.
- 2. On the figure AB and CD are parallel chords in the circle where the diameter PM is perpendicular to them. (Note that parts a), b), and c) are independent.)
 - a) Prove that AC = BD. [Hint: draw a triangle connecting A, B and the middle of chord CD. What type of a triangle is this? Can you prove that its neighboring triangles are congruent?
 - b) If the radius r = 5 cm and the chord AB = 8 cm, find the area of $\triangle AOB$.
 - c) If \angle OAB = 15 0 , how big are the arcs $\widehat{\ }$ AM (with one check mark) and $\widehat{\ }$ ACP
- 3. In a circle the chords AB and CD are intersecting and are perpendicular to each other. AB splits CD in segments with size 3 cm and 7 cm. Find the distance from the center of the circle to the chord AB (the distance is a line perpendicular to AB).