MATH5 CLASSWORK 18

April, 820018
Recall: Square root of a (denoted \sqrt{a} is a number whose square is equal to a. For example: square root of 25 is 5 , because $5^{2}=25$.

We discussed that

$$
\begin{gathered}
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \\
\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}
\end{gathered}
$$

Square roots naturally appear in geometry:

Pythagorean Theorem: In a right triangle with legs a, b and hypotenuse c, one has

$$
a^{2}+b^{2}=c^{2} \quad \text { or } \quad c=\sqrt{a^{2}+b^{2}}
$$

A proof of this theorem is illustrated below:

In this square, the total area is
$(a+b) \times(a+b)=a \times(a+b)+b \times(a+b)=a^{2}+a b+a b+b^{2}=a^{2}+2 a b+b^{2}$
On the other hand, the area of each triangle is $\frac{1}{2} a b$; and the area of shaded square is c^{2}. Thus, we get $a^{2}+2 a b+b^{2}=4 \cdot \frac{1}{2} a b+c^{2}$, which gives

$$
a^{2}+b^{2}=c^{2}
$$

Egyptian triangle:

Geometry is an art. It is a doodle done with pencil, ruler and compass. Usually a solution to geometry problem should be accompanied by a relevant geometrical doodle done with a pencil.

MATH5 HOMEWORK 18

April 8, 2018

1. Can you find a right triangle where all sides are whole numbers and the hypotenuse is 13?
2. If, in a right triangle, one leg has length 1 and the hypotenuse has length 2 , what is the other leg?
3. Find $\sqrt{2^{6} \cdot 7^{2}}$ [use square root properties we discussed]; $\sqrt{\frac{1}{16}} ; \sqrt{\frac{4}{9}}$.
4. Find the height and area of the figure below. Lengths of three sides are given; the two marked angles are right angles.

5. Take some positive number $\mathbf{x}<\mathbf{1 0 0}$ and using calculator (or computer) calculate the number $\frac{\boldsymbol{x}}{\mathbf{2}}+\frac{\mathbf{1}}{\boldsymbol{x}}$. Call the result x and repeat the same calculation with the new x . Do it 10 times. We will compare the results in class.

\boldsymbol{x}	$\frac{\boldsymbol{x}}{\mathbf{2}}+\frac{\mathbf{1}}{\boldsymbol{x}}$
Initial x	result_1
result_1	result_2
result_2	result_3
result_3	\ldots.
..........
result_9	result_10

result_10 =
6. Please watch about perpendicular bisectors, 12 min , get comfortable
https://www.khanacademy.org/math/geometry-home/triangle-properties/perpendicular-bisectors/v/circumcenter-of-a-triangle

