CLASSWORK 3 AND REVIEW,

October, 12017

Fraction multiplication: $\quad \frac{3}{4} \cdot \frac{2}{3}=$

1. Multiply enumerators and denominators:

$$
\frac{3}{4} \cdot \frac{2}{3}=\frac{3 \cdot 2}{4 \cdot 3}
$$

2. Simplify by using number prime factorization:

$$
\frac{3}{4} \cdot \frac{2}{3}=\frac{3 \cdot 2}{4 \cdot 3}=\frac{3 \cdot 2}{2 \cdot 2 \cdot 3}=\frac{1}{2}
$$

Fraction division: $\quad \frac{1}{2} \div \frac{2}{3}=$

1. Find a reciprocal (invers element) of the divisor. Reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$.
2. Turn division into multiplication and simplify by using prime factorization:

$$
\frac{1}{2} \div \frac{2}{3}=\frac{1}{2} \cdot \frac{3}{2}=\frac{1 \cdot 3}{2 \cdot 2}=\frac{3}{4}
$$

3. Does it make sense?

Lets look into the example: $\frac{1}{2} \div \frac{1}{6}=$.
It is asking How many times $\frac{1}{6}$ is in $\frac{1}{2}$?
$\frac{1}{2} \div \frac{1}{6}=\frac{1}{2} \cdot \frac{6}{1}=\frac{1 \cdot 6}{2 \cdot 1}=3$ times $!$
Another example: $\frac{1}{4} \div \frac{1}{2}=$
It is asking How many times $\frac{1}{2}$ is in $\frac{1}{4}$

$$
\frac{1}{4} \div \frac{1}{2}=\frac{1}{4} \cdot \frac{2}{1}=\frac{1 \cdot 2}{4 \cdot 1}=\frac{1}{2} \text { times }!
$$

If you still have questions, visit this website http://www.mathsisfun.com/fractions division.html

We spoke about variable. Variable as a letter which can be anything.
Using variables, we can write the basic rules for addition and multiplication as follows:

$$
\begin{array}{cl}
a+b=b+a & \text { commutative law for addition } \\
a b=b a & \text { commutative law for multiplication } \\
a+(b+c)=(a+b)+c & \text { associative law for addition } \\
a(b c)=(a b) c & \text { associative law for multiplication }
\end{array}
$$

$$
a(b+c)=a b+a c
$$

distributive law

These laws can be used for simplifying calculations and rewriting expressions in a simpler form. Some more rules for simplification:

$$
\begin{aligned}
& a(b-c)=a b-a c \\
& a-(b+c)=a-b-c \\
& a-(b-c)=a-b+c
\end{aligned}
$$

distributive law
 distributive law
 distributive law

HOMEWORK 3,

October, 12017

1. Watch this video: https://www.youtube.com/watch?v=OrgrRQKravM Print and fill the work sheets posted on the class website!!!
2. Find the values of these algebraic expressions:
(a) $78+3 x$ for $x=8$; and $\frac{2}{3}$;
(b) $54 \div(x-7)$ for $x=9$; and 10 ;
3. Solve equations: (First - open parenthesis, second - collect all X s at the left, and numbers at the right, find X)
(a) $3(3 x-1)=2(2 x+11)$
(b) $5(x-2)=3 x+20$
(c) $2(x-7)=x+11$
4. Calculate, simplify! Use prime factorization, if needed.
(a) $\frac{3}{4} \cdot \frac{2}{3}=$
(b) $\frac{5}{9} \cdot \frac{3}{15}=$
(c) $\frac{9}{20} \cdot \frac{10}{27}=$
(d) $\frac{9}{2} \div \frac{21}{2}=$
(e) $6 \div \frac{2}{3}=$
(f) $7 \div \frac{14}{3}=$
5. Simplify (Collect similar terms):

$$
\begin{aligned}
& a^{2} b+2 a \cdot a b-3 a^{2}-3 a \cdot a+a-b a^{2}-2 a+2 b a \cdot a= \\
& b^{2} a+2 b \cdot b a-3 a b^{2}-3 b \cdot a+a-a b^{2}-2 a+2 a b \cdot b=
\end{aligned}
$$

6. *Below are some examples from a multiplication table in an unknown language. All of the products are numbers less or equal than 20.
```
pe }\times\mathrm{ nei = nei la nei
nei }\times\mathrm{ hato = liomu la pe
hato }\times\mathrm{ hato = nei la tano
pe }\times\mathrm{ pe = nei
pe }\times\mathrm{ tano = liomu
hato }\times*=\mathrm{ liomu la tano
```

What number should be there in place of *?

