Classwork 17 MARCH, 4 2018

We have discussed **congruent** objects. Two objects are **congruent** if

Two triangles are congruent if

they have same sides and same angles.

<u>Congruent Triangles Rules</u>: $(\cong Congruent symbol)$

1. 3 Sides are equal (SSS)

2. Side Angle Side are equal (SAS)

3. Angle Side Angle are equal (ASA)

4. Angle Angle Side are equal (AAS)

$\underline{Median} \ (\text{middle}) \ \underline{definition}$

A **median** of a triangle is a **line segment** joining a vertex to the midpoint of the opposing side.

Proof that in an isosceles triangle a distance from any point on the median to the base vertexes is the same.

1. Draw an isosceles triangle.

<u>Note:</u> the properties of the isosceles triangle are marked. **Sides** are **equal**, **base angles** are **equal**.

2. Draw a median in an isosceles triangle

Note: the properties of the median are marked.

$$\triangle ABO \cong \triangle CBO \ by \ SAS =>$$

$$\angle AOB = \angle BOC = 90^{\circ}$$
, because $\angle AOB$ is straight

BOOK

A

A

3. Draw a point D on the median and connected with **A** and **C**.

$$DO = DO$$
, $AO = CO$, $AOB = BOC = 90^{\circ} = >$

$$\triangle ADO \cong \triangle CDO \ by \ SAS$$

$$=>AD=CD$$

HOMEWORK 17 MARCH 4, 2018

Use symbols: \angle , \triangle , =>, \cong , etc. wherever possible.

1. Proof:

Given: \angle ABC = \angle CDE= 90°;

AB = ED;

C is the midpoint of BD

Proof that: \triangle ABC \cong \triangle EDC.

My proof:

2. Proof:

Given: \angle 1 = \angle 2; AD = CD;

Proof that: $\angle 5 = \angle 6$;

My proof:

3. Proof:

Given: $\angle A = \angle E$; AB = BE;

Proof that: AD = EC;

My proof: