Homework for Lesson № 23

Make any needed drawings to solve the word problems:
A. Seven boxes contain 28 kg of apples. How many boxes contain 36 kg of apples?
B. Seven boxes contain 28 kg of apples. How many boxes contain \boldsymbol{w} kg of apples?

D. \boldsymbol{m} boxes contain $\boldsymbol{y} \mathrm{kg}$ of apples. How many boxes contain \boldsymbol{w} kg of apples?
\qquad

C. Seven boxes contain $\boldsymbol{y} \mathrm{kg}$ of apples. How many boxes contain $\boldsymbol{w} \mathrm{kg}$ of apples?
\qquad
\qquad
\qquad
2 Do each problem in your notebook and copy your results here:
a). $204 \div 12=$ \qquad $1890 \div 42=$ \qquad
b). $43=7-3 x$
$x=$ \qquad $x=$ \qquad
\qquad

$$
24-20: x=19
$$

$$
x=
$$

\qquad
c). When five times a number is decreased by 1, it has the same value as four times the number increased by 10. What is the number?

Using the tree method find the sets of prime factors for each of the following

3numbers: 12, 75, 24, 16. Write these factors into Venn Diagrams. Note, sometimes you might not need all squares. Other times you might actually have to draw additional squares to complete the task.

5 Solve the equations:

	2								
	$\frac{2}{5}$	\boldsymbol{x}	$=$	1	4				
	5								
	1								
	$\frac{1}{5}$	\boldsymbol{x}	$=$						
	\boldsymbol{x}	$=$							
	\boldsymbol{x}	$=$							
									\ddots

	3								
	$\frac{3}{4}$	\boldsymbol{x}	$=$	1	8				
	4								
	1								
	$\frac{1}{4}$	\boldsymbol{x}	$=$						
	\boldsymbol{x}	$=$							
	\boldsymbol{x}	$=$							
									\ddots

	1								
	$\frac{1}{7}$	\boldsymbol{x}	-	2	$=$	1			
	1								
	$\frac{1}{7}$	\boldsymbol{x}	$=$						
	7								
	\boldsymbol{x}	$=$							
	\boldsymbol{x}	$=$							
									\ddots

6 Calculate:

$$
\begin{aligned}
& 9 \times \frac{2}{3}=9: 3 \times 2= \\
& 20 \times \frac{1}{4}=20: 4 \times 1= \\
& 8 \times \frac{3}{2}=8: 2 \times 3= \\
& 18 \times \frac{5}{6}=18 \times 5: 6= \\
& 14 \times \frac{4}{7}=14: 7 \times 4= \\
& 9 \times \frac{1}{3}=9 \times 1: 3 \\
& = \\
& 20 \times \frac{3}{5}=20: \square \times \square=12 \times \frac{1}{4}=12 \times \square: \square=8 \times \frac{3}{4}=8: \times= \\
& \frac{1}{5}+\frac{1}{5}=\quad \frac{2}{5}+\frac{1}{5}=\quad \frac{3}{5}+\frac{1}{5}=\quad \frac{2}{5}+\frac{2}{5}= \\
& \frac{1}{7}+\frac{1}{7}= \\
& \frac{2}{7}+\frac{3}{7}= \\
& \frac{1}{7}+\frac{5}{7}= \\
& \frac{2}{n}+\frac{1}{n}= \\
& \frac{1}{4} \times 3=\frac{\square}{\square} \\
& \frac{1}{n} \times 7=\frac{\square}{\square} \\
& \frac{1}{n} \times 5=\frac{\square}{\square} \\
& \frac{1}{n} \times p= \\
& 17 \times 12: 17= \\
& 19 \times 11: 11= \\
& 31 \times 13: 31= \\
& 5 \times 13 \times 12: 13= \\
& 17 \times 6 \times 4: 17= \\
& 29 \times 12 \times 4: 29=
\end{aligned}
$$

Using a straight edge and a compass construct $\triangle \boldsymbol{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}$ with sides twice longer 7 than those of the $\triangle A B C$.

8 Explain which transformation produced the red shape from the green shape. Try to make a corresponding blue shape using the same transformation of the red shape.

	\rightarrow									

Subtraction in ancient Egyptian symbols is very similar to our subtraction today. For example, you can erase the symbols that get subtracted.

Sometimes though you might need to regroup. In example below there are

Number	Symbol	Description
1	I	Vertical stroke
10	\cap	Heel bone
100	๑	Scroll
1000	\ddots	Lotus flower
10,000	6	Pointing finger
100,000	γ	Fish
$1,000,000$	Ω	Kneeling person

Try to subtract using Egyptian symbols. Regroup when needed.
9
$\cap \cap \cap \cap||||||\mid$

- $\cap \cap \mid$

อ๑อ๑อ \cap ก ก ก | | |

ใ๑๑๑๑๑ ก ก ก ก|||

- ๑๑๑๑ \cap !

- ๑๑๑๑ $\cap \cap \cap \cap \cap \cap \cap \cap 山 山$

10 Calculate:
$5+4=$
$5+(-4)=$
$5-4=$
$5-(-4)=$
$-5-4=$ $-5-(-4)=$

11 Remove parenthesis:

$$
(2 x+3-4 w) \times 2=
$$

\qquad

