Homework for Lesson № 20

1 Write expressions to solve the word problems.
A. Little Joe can paint 2 plates in $1 / 3$ of an hour. How many plates can he paint in 1 hour?

B. Little Joe can paint 2 plates in $1 / 3$ of an hour. How many plates can he paint in \boldsymbol{x} hours?

C. Little Joe can paint \boldsymbol{w} plates in $1 / 3$ of an hour. How many plates can he paint in 3 hours?

D. Little Joe can paint 2 plates in $1 / 3$ of an hour. How long will it take him to paint 12 plates?

E. Little Joe can paint 2 plates in $1 / 3$ of an hour. How long will it take him to paint \boldsymbol{w} plates?

F. Little Joe can paint \boldsymbol{x} plates in $1 / 3$ of an hour. How long will it take him to paint \boldsymbol{w} plates?

Do in your notebook and copy your answers here:
a).

$$
2608 \div 8=
$$

$$
3660 \div 4=
$$

\qquad $74 \times 11=$ \qquad $56 \times 48=$ \qquad
b). Determine the order of operation in the "left side" expressions AND make all necessary drawings when solving these equations:
$92-x: 4=78$
$(w+3) \cdot 8=32$
$81-27: y=72$
$x=$ \qquad
$w=$ \qquad
$y=$ \qquad

3 Fill in the missing numbers and complete the drawings:

Write a rule to describe translation of each red shape towards its green image.
Indicate the translation with an appropriate arrow on each drawing.

4 Transform the following shapes according to the rules:

4 units \rightarrow
2 unit $\rightarrow 3$ units \downarrow
Blue arrow

5 Plot each shape and then translate it.

$\boldsymbol{A}(-2,2) ; \boldsymbol{B}(-1,-3) ; \boldsymbol{C}(-3,-1)$ Move: 5 units \rightarrow, 3 units \downarrow								1,2);	; $\boldsymbol{B}(2,-4$)	-4); C		$\text { 3); } \boldsymbol{B}(-1,0)$								
			$4 y$								\square	-		11						
												-								
																		\bigcirc		
						x						x						2		

The coordinates of the vertexes of triangle $\triangle A J N$ are $\boldsymbol{A}(-1,0) ; J(-1,-2) ; N(3,-3)$. Its translation 2 units \leftarrow and 1 units \uparrow produces $\triangle \boldsymbol{A}^{\prime} \boldsymbol{J}^{\prime} \boldsymbol{N}^{\prime}$.
$A(-1,0) \rightarrow A^{\prime}(\ldots, \ldots) \quad J(-1,-2) \rightarrow J^{\prime}(\ldots, \ldots) \quad N(3,-3) \rightarrow N^{\prime}$ \qquad

Fractions of areas.

Measure the sides of the rectangles $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \boldsymbol{s}$ in centimeters. Calculate their areas in square centimeters (cm^{2}) and in cells:
$\boldsymbol{p}=\boldsymbol{q}=\boldsymbol{r}=\boldsymbol{s}=\quad \mathrm{cm}^{2}=\quad$ cells $\quad 1 \mathrm{~cm}^{2}=\quad$ cells $\quad 1$ cell $=\quad \mathrm{cm}^{2}$

Gray stripes represent $\frac{1}{3}$ of rectangles \boldsymbol{p} and \boldsymbol{q}. Find the areas of each gray strip in cm^{2} and in cells.

$$
\frac{1}{3} \times 72=\quad \frac{1}{3} \times 18=
$$

Split rectangle \boldsymbol{r} into 6 equal parts by horizontal lines and rectangle \boldsymbol{s} into 6 equal parts by the vertical lines.

Split rectangles \boldsymbol{t} and \boldsymbol{w} in 4 equal parts in two different ways $\quad \frac{1}{4} \times 36=$
Split rectangles \boldsymbol{x} and \mathbf{z} in 2 equal parts in two different ways $\frac{1}{2} \times 24=$
$1: 4=$
$1: 3=$
$1: \frac{1}{4}=$
1: $\frac{1}{3}=$
$1: \frac{1}{6}=$
$\frac{1}{6} \times 6=$
$6 \times \frac{1}{6}=$
$p \times \frac{1}{p}=$
$\frac{1}{4} \times \frac{1}{4}=\quad \frac{1}{3} \times \frac{1}{3}=\quad \frac{1}{6} \times \frac{1}{6}=$
$\frac{1}{4}: 4=\quad \frac{1}{3}: 3=\quad \frac{1}{6}: 6=$
$\frac{1}{4}: \frac{1}{4}=\quad \frac{1}{3}: \frac{1}{3}=$
$\frac{1}{6}: \frac{1}{6}=$
$\frac{1}{p}: \frac{1}{p}=$

9 Transform fractions:

$$
\begin{array}{lllll}
\frac{1}{3}=\overline{12} & \frac{1}{2}=\overline{8} & \frac{1}{7}=\frac{1}{28} & \frac{1}{5}=\overline{25} & \frac{1}{2}=\overline{4} \\
\frac{3}{15}=\overline{5} & \frac{4}{32}=\overline{8} & \frac{3}{21}=\frac{1}{2} & \frac{2}{10}=\frac{1}{-} & \frac{3}{9}=-
\end{array}
$$

10
Calculate:

$$
55 \times \frac{1}{11}=
$$

$20 \times \frac{1}{5}=$
$21 \times \frac{1}{7}=$
$54 \times \frac{1}{9}=$
$32 \times \frac{1}{8}=$
$32 \times \frac{1}{4}=$
$18 \times \frac{1}{6}=$
$27 \times \frac{1}{3}=$

11
 Calculate:

$1+3=$
$1+(-3)=$
$1-3=$
$1-(-3)=$
$(-1)+3=$
$(-1)+(-3)=$
$(-1)-3=$
$(-1)-(-3)=$
$(-4)+2=$
$(-4)+(-2)=$
$(-4)-2=$
$(-4)-(-2)=$

12

When LJ was just a little mouse he liked to chew on everything. His mom had several rugs around the house looking like this:

After some time they started to look like this:

Or like that:

Reconstruct the original drawings from the blanks squares.

Remember that the cats from the West part of the Island always tell the truth; the cats from the East of the Island always lie? One day, LJ overheard a white cat saying to an orange cat:

"At least one of us is telling the truth".
"You are a liar" was the response.
Which part of the Island were they from?
White \qquad Orange \qquad

