Homework for Lesson № 6

1 Solve the 2-step problems by identifying units' values. Write each step separately, and describe its meaning (see classwork sample).
A. Granny Rhinoceros baked cookies and distributed them evenly among plates. On 3 plates, there are 18 cookies in total. How many cookies are there on 7 plates?

1. \qquad
2. \qquad
B. Grapes are packed in identical boxes. 8 boxes contain 56 kg of grapes. How many kilograms of grapes are in 5 boxes?
3. \qquad
4. \qquad
C. A snail eats 63 grams of leaves in 9 days.

How many grams of leaves does the snail eat in a week?

1. \qquad
2. \qquad
D. There are 35 liters of juice in 5 identical cans. How many liters of juice are there in 9 such cans?
3. \qquad
4.

2 Solve equations in your notebook, copy your answers here. Make diagrams!
$203-x=49$
$y+72=841$
$42: w=6$
$x=$ \qquad $y=$ \qquad $w=$ \qquad

3
\boldsymbol{C} is a set of the school's athletes. \boldsymbol{F} is a set of the school's soccer players. \boldsymbol{B} is the set of the school's goal keepers in soccer teams.
Draw a Venn Diagram for the sets $\boldsymbol{B}, \boldsymbol{C}$, and \boldsymbol{F}.
\boldsymbol{P} is a set of animals. \boldsymbol{Q} is a set of predators. \boldsymbol{R} is a set of birds. Draw a Venn Diagram for the sets $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{R}.

4
Use $\}$ to list the elements of
sets $\boldsymbol{A}, \boldsymbol{B}$, and their intersection. List elements in increasing order.
$A=$ \qquad
$B=$ \qquad
$\boldsymbol{A} \cap \boldsymbol{B}=$ \qquad

Fill in the blanks with the symbols \in or \notin :
$1 \quad \boldsymbol{A}$
$4 \quad$ A
$4 \quad$ B
$8 \quad \boldsymbol{A}$
$\underline{0 \quad B}$
6 B

5 List the properties that the elements in the intersection of $\operatorname{sets} \boldsymbol{P}$ and \boldsymbol{Q} share with
each set.

1. \qquad
2. \qquad

3. \qquad
4. \qquad

Complete the diagrams to help you solve the problems:
A. There are 5 potatoes in each of 6 baskets and 3 tomatoes in each of 4 bags. How many vegetables are there total?

B. There are \boldsymbol{a} potatoes in each of \boldsymbol{b} baskets and 3 tomatoes in each of \boldsymbol{w} bags. How many vegetables are there in total?
C. Jake types \boldsymbol{k} pages per hour, Lisa types \boldsymbol{m} pages. How many pages did they type on

Friday if Jake worked 5 hours and Lisa worked q hours?

56
D.* There are 56 fruits on the table. There are 3 bananas on each of 7 plates. The rest are oranges distributed in 5 bowls. How many oranges are in each bowl?

\qquad
\qquad

7 Use analysis of operations to solve the equations.

\boldsymbol{x}	$:$	7	+	5	$=$	1	1		
$\boldsymbol{x}:$	7	$=$	1	1	-	5			
$\boldsymbol{x}::$	7	$=$							

8 Use a compass to find set of all points that are ...
$\ldots 5 \mathrm{~cm}$ away from point \boldsymbol{K}
and
$\ldots .4 \mathrm{~cm}$ away from point M.

How many points did you find?

9
Use a compass to find all points on curve \boldsymbol{p} located 3 cm away from point \boldsymbol{X}.

How many points did you find?

How do we call the set of all points located 4 cm away from point \boldsymbol{X} ?

10 Find set of all points that are ...
$\ldots 2 \mathrm{~cm}$ away from point \boldsymbol{A} and
$\ldots 2 \mathrm{~cm}$ away from point \boldsymbol{B}.

11
The dimensions of the triangle $\triangle A B C$ are labeled on the drawing. List two properties of each of the points A, B, and C in terms of distances.

A:	B:	C :
1. $\|\boldsymbol{A B}\|=$	1.	1.
2.	2.	2.

* Check $\boldsymbol{\sim}$ the TRUE statements; cross \boldsymbol{X} the FALSE statements.
$\square \quad \boldsymbol{A} \in \operatorname{Circ}(\boldsymbol{B}, 3 \mathrm{~cm})$
$\square \quad \boldsymbol{A} \in \operatorname{Circ}(\boldsymbol{C}, 3 \mathrm{~cm})$
$\square \quad \boldsymbol{A} \in \operatorname{Circ}(\boldsymbol{A}, 3 \mathrm{~cm})$
$\square \quad \boldsymbol{A} \notin \operatorname{Circ}(\boldsymbol{B}, 4 \mathrm{~cm})$
$\square \quad \boldsymbol{B} \in \operatorname{Circ}(\boldsymbol{A}, 3 \mathrm{~cm}) \cap \operatorname{Circ}(\boldsymbol{C}, 4 \mathrm{~cm})$
$\square \quad \boldsymbol{A} \notin \operatorname{Circ}(\boldsymbol{B}, 3 \mathrm{~cm}) \cap \operatorname{Circ}(\boldsymbol{C}, 5 \mathrm{~cm})$
$\square \quad \boldsymbol{C} \notin \operatorname{Circ}(\boldsymbol{A}, 3 \mathrm{~cm}) \cap \operatorname{Circ}(\boldsymbol{C}, 5 \mathrm{~cm})$
$\square \quad A B \cap B C=\varnothing$
$\square \quad A C \cap B C \neq \varnothing$

Take your time
Use your imagination
You may use a compass,
but try not to.

$\square \quad \boldsymbol{B} \in \operatorname{Circ}(\boldsymbol{A}, 3 \mathrm{~cm}) \cap \boldsymbol{B C}$ \square $\boldsymbol{B} \in \operatorname{Circ}(\boldsymbol{A}, 5 \mathrm{~cm}) \cap \boldsymbol{B C}$

Try to trace each shape without lifting the pencil or tracing the same edge twice. For each picture state if it is possible.

13 Foxy Tail put apples and oranges in three boxes and labeled these boxes. Of course, he placed each label onto the wrong box.

You are allowed to pick just one fruit from one box only to identify the content of each box.

Which box would you choose and why?

I choose box \# \qquad because \qquad

14

Who's the fastest: A deer, a fox, a snail, a turtle, or a pig? Here's what you know:
The turtle is faster than the fox
The pig is slower than the snail
The snail is faster than the deer
slow The pig is slower than the fox

The deer is faster than the turtle fast

Which two are impossible to compare? \qquad

