Lesson 3. Homework

1 Compute.
$3 \mathrm{~cm}+6 \mathrm{~cm}=\square \mathrm{cm}$
$4 \mathrm{~cm}+5 \mathrm{~cm}-1 \mathrm{~cm}=\square \mathrm{cm}$
$8 \mathrm{~cm}-5 \mathrm{~cm}=\square \mathrm{cm}$
$7 \mathrm{~cm}-4 \mathrm{~cm}+2 \mathrm{~cm}=\square \mathrm{cm}$

2 Which segment is longer (the left one or the right one) and by how much? (Measure in cm).

3 Solve the problems.

1) We brought 4 chairs to the room and then 3 more. How many chairs we brought altogether? (Write a number expression.)
2) There were 9 boys and 7 girls on a skating rink. Were there more girls or boys? And by how many?

4 Whole and parts. Mom brought a bag with 10 apples. In how many ways Tom and Betty can divide the apples among themselves?

5 Kate, Mike, and Alex entered the class. In which order could they enter the class? Use K for Kate, M for Mike, and A for Alex.

KMA \qquad , \qquad , \qquad , \qquad , \qquad

6 Team "Wolves" are in blue t-shirts and team "Lions" are in red.

Color the picture, if "Wolves" stand to the right from the referee.

7 Compute.

$5-2=$
$7-5=$
$3+5-1=$
$10-5-1=$
$4+3=$
$3+4=$
$6+2-3=$
$2+8-3=$

8 This is Max. He loves doing math, but there is a bit of a problem - his legs are too short! He needs your help to solve this problem! Help Max construct and color the pyramid. Write in which order he needs to place the pieces.

Color the pyramid if you and Max know that

- there are only red, green, blue, and white pieces available;
- the largest piece is red;
- the green piece is between the red and the blue pieces;
- the blue piece is between the green and the white pieces; and
- the top is neither green nor blue (however, it is also not white).

9 Fill in missing numbers.

$\mathbf{0}$	$\mathbf{1}$		$\mathbf{3}$			$\mathbf{6}$			$\mathbf{9}$	
	$\mathbf{9}$		$\mathbf{7}$			$\mathbf{4}$			$\mathbf{1}$	

10 Sophie made a necklace for her mother. After every red bead a green one follows. Between the green and the blue beads are the

11 Count the cubes.

\square

\square

\square

