
Programming with Python

Lists, Tuples and Dictionaries

Lists and Dictionaries

 A list allows the programmer to manipulate a sequence of data
values of any types

 A dictionary organizes data values by association with other data
values rather than by sequential position

 Lists and dictionaries provide powerful ways to organize data in
useful and interesting applications

Lists

 List: Sequence of data values (items or elements)
 Some examples:
◦ Shopping list for the grocery store
◦ Guest list for a wedding
◦ Recipe, which is a list of instructions
◦ Text document, which is a list of lines

 Each item in a list has a unique index that specifies its position (from
0 to length – 1)

List Literals and Basic Operators

 Some examples:
['apples', 'oranges', 'cherries']

[[5, 9], [541, 78]]

 When an element is an expression, its value is included in the list:

Lists of integers can be built using range() function:

List Literals and Basic Operators

 Some examples:
['apples', 'oranges', 'cherries']

[[5, 9], [541, 78]]

 When an element is an expression, its value is included in the list:

Lists of integers can be built using range() function:

List Literals and Basic Operators

 len, [], +, and == work on lists as expected:

 To print the contents of a list:

 in detects the presence of an element:

Replacing an Element in a List

 A list is mutable
◦ Elements can be inserted, removed, or replaced
◦ The list itself maintains its identity, but its state—its length and its contents—

can change
 Subscript operator is used to replace an element:

 Subscript is used to reference the target of the assignment, which
is not the list but an element’s position within it

List Methods for Inserting and Removing
Elements
 The list type includes several methods for inserting and removing

elements

Searching a List

• in determines an element’s presence or absence, but does not
return position of element (if found)

 Use method index to locate an element’s position in a list
◦ Raises an error when the target element is not found

Sorting a List

 A list’s elements are always ordered by position, but you can
impose a natural ordering on them
◦ For example, in alphabetical order

 When the elements can be related by comparing them <, >, and ==,
they can be sorted
◦ The method sort mutates a list by arranging its elements in ascending order

Tuples

 A tuple resembles a list, but is immutable
◦ Indicate by enclosing its elements in ()

 Most of the operators and functions used with lists can be used in
a similar fashion with tuples

 What is the advantage of tuple over list?

Dictionaries

 A dictionary organizes information by association, not position
◦ Example: When you use a dictionary to look up the definition of “mammal,”

you don’t start at page 1; instead, you turn to the words beginning with “M”
 Data structures organized by association are also called tables or

association lists
 In Python, a dictionary associates a set of keys with data values

Dictionary Literals

 A Python dictionary is written as a sequence of key/value pairs
separated by commas
◦ Pairs are sometimes called entries
◦ Enclosed in curly braces ({ and })
◦ A colon (:) separates a key and its value

 Examples:
{'Sarah':'476-3321', 'Nathan':'351-7743'}

{'Name':'Molly', 'Age':18}

{}

 Keys can be data of any immutable types, including other data
structures

Adding Keys and Replacing Values

 Add a new key/value pair to a dictionary using []:

 Example:

 Use [] also to replace a value at an existing key:

Accessing Values

 Use [] to obtain the value associated with a key
◦ If key is not present in dictionary, an error is raised

 If the existence of a key is uncertain, test for it using the dictionary
method has_key
◦ Easier strategy is to use the method get

Traversing a Dictionary

Case Study: Nondirective Psychotherapy

 Doctor in this kind of therapy responds to patient’s statements by
rephrasing them or indirectly asking for more information

 Request:
◦ Write a program that emulates a nondirective psychotherapist

Case Study: Nondirective Psychotherapy
(Analysis)
 When user enters a statement, program responds in one of two

ways:
◦ With a randomly chosen hedge, such as “Please tell me more”
◦ By changing some key words in user’s input string and appending string to a

randomly chosen qualifier
 Thus, to “My teacher always plays favorites,” program might reply, “Why do you say

that your teacher always plays favorites?”

Case Study: Nondirective Psychotherapy
(Design)
 Program consists of a set of collaborating functions that share a

common data pool
 Pseudocode:

output a greeting to the patient

while True
 prompt for and input a string from the patient

 if the string equals “Quit”

 output a sign-off message to the patient

 break

 call another function to obtain a reply to this string

 output the reply to the patient

Case Study: Implementation

Case Study: Implementation

Homework

 Complete and test the Nondirective Psychotherapy program if you have not finished it
in class.

 Enhance the program by introducing a tuple of exclamations and
integrate the exclamations into doctor's replies:

exclamations = (“Oh, no!”, “Really?”, “Unbelievable!”)

	Slide 1
	Lists and Dictionaries
	Lists
	List Literals and Basic Operators
	Slide 5
	List Literals and Basic Operators
	Replacing an Element in a List
	List Methods for Inserting and Removing Elements
	Searching a List
	Sorting a List
	Tuples
	Dictionaries
	Dictionary Literals
	Adding Keys and Replacing Values
	Accessing Values
	Slide 16
	Case Study: Nondirective Psychotherapy (Request)
	Case Study: Nondirective Psychotherapy (Analysis)
	Case Study: Nondirective Psychotherapy (Design)
	Slide 20
	Slide 21
	Slide 22

