Regular Expressions

A regular expression is a special sequence of characters that helps you match or find other strings or
sets of strings, using a specialized syntax held in a pattern. Regular expressions are widely used in
UNIX world.

The module re provides full support for Perl-like regular expressions in Python. The re module raises
the exception re.error if an error occurs while compiling or using a regular expression.

Match, Search, Findall, Substitute

re.match (pattern, string, flags=0) This function attempts to match RE pattern to
string with optional flags.

re.search(pattern, string, flags=0) Scan through string looking for the first location where the
regular expression pattern produces a match, and return a corresponding match object. Return None if
no position in the string matches the pattern; note that this is different from finding a zero-length match
at some point in the string.

re.findall(pattern, string, flags=0) Return all non-overlapping matches of pattern in string, as a
list of strings. The string is scanned left-to-right, and matches are returned in the order found.

re . sub(pattern, repl, string, count=0, flags=0) Return the string obtained by replacing the leftmost
non-overlapping occurrences of pattern in string by the replacement repl. If the pattern isn’t found,
string is returned unchanged. repl can be a string or a function.

Exercise 1

import re

line = "My Dogs are smarter than your Cats"
results = re.findall('[dc]\S+s', line, re.M|re.I)
if results:

print ("results: ", results)
else:

print ("Nothing found")

Exercise 2

import re

phone = " (631) 615-4215 # School Nova phone number"
num = re.sub('#.*$', '', phone)

print ("phone num: ", num)

num = re.sub('\D', '', phone)

print ("phone num: ", num)

wfals regularexpressions

Anchors

~ Start of string

WA Start of string

% End of string

N End of string

\b Word boundary

\B Not word boundary
= Start of word

Ao End of word

Character Classes

\C Control character
\s White space

VS Mot white space
\d Digit

o Mot digit

w Waord

W Mot word

o Hexadecimal digit
O Octal digit

I
i)
E

A= 4w s

[:upper:] Upper case letters
[:lower:] Lower case letters
[:alphat] All letters
[:alnum;:] Digits and letters
[:digit:] Digits
[:xdigit:] Hexadecimal digits
[:punct:] Punctuation
[:blank:] Space and tab
[ispace:] Blank characters
[:entrl:] Control characters
[:graph:] Printed characters
[:print:] Printed characters and
spaces
[sword:] Digits, letters and
underscore

Assertions

7=
21

Lookahead assertion
Megative lookahead

o= Lookbehind assertion

= or ?=! Megative lookbehind

P Once-only Subexpression
) Condition [if then]

70 Condition [if then else]
TH# Comment

Avallable free from
www.ILovelackDaniefs.com

* 0 or more
“F 1 or more
? Doril
{3y Exactly 3
{3,} 3 or more
{3,53} 3, 40r5

Quantifier Modifiers

"x" below represents a quantifier
x? Ungreedy version of "x"

Escape Character

Y Escape Character

Metacharacters (must be escaped)

[
1
\
|
=

Groups and Ranges

Any character except

new line (\n)
(alb) aorb
(...} Group
(?:...) Passive Group
[abc] Range (aorborc)
[*abc] Not a or b or ¢
[a-q] Letter between a and g
[A-Q] Upper case letter
between A and Q
[0-71 Digit between 0 and 7
\n nth group/subpattern

Mote: Ranges are inclusive.

Pattern Modifiers

Global match
Case-insensitive

Multiple lines

Treat string as single line
Allow comments and
white space in pattern
Evaluate replacement
Ungreedy pattern

g
i
m
s
X

i m

Special Characters

W MNew line

hr Carriage return

M Tab

W Vertical tab

W Form feed

a0 Octal character xxx
Yxhh Hex character hh

String Replacement (Backreferences)

$n nth nan=passive group
§2 "xyz" in /" (abclxyz))$/
41 "xyz™in fo(7abe)(xyz)$/
$° Before matched string

&' After matched string

$+ Last matched string

$E& Entire matched string

Sample Patterns

Pattern

([&-Za-z0-9-1+)
({123 0d{1, 2 0Nda{4})
([~4s]+(?=\.(ipalgiflpng))h.\2)
(~[1-9{1}$|~[1-41{1}[0-9]1{1}%|~50%)
[#?([A-Fa-fO-9]){3}(([A-Fa-f0-9]){3})"
((?=."\d}(?=*[a-z])(?=.*[A-Z]).{B,15})

(w+@[a-z8-Z_]+ 7\ [a-zA-Z]{2,6})
{20 =1+0=)

Note: These patterns are intended for reference purposes and have not been
extensively tested. Please use with caution and test thoroughly before use.

Wil Match

Letters, numbers and hyphens
Date (e.g. 21/3/2006)

jpg, gif or png image

Any number from 1 to 50 inclusive
Valid hexadecimal colour code
String with at least one upper case
letter, one lower case letter, and one
digit {useful for passwords).

Email addresses

HTML Tags

Homework

Search through your hard drive for email addresses using the sample program below. Adjust the
program to fit your environment (root directory, file extension etc.):

import os, fnmatch, re, sys
found = set ()

pattern = re.compile(r'\b[A-Z0-9. $+-1+Q@[A-Z20-9.-1+\.[A-Z]
{2,4}\b', re.I)

for root, dir, files in os.walk("/Users/serge/projects"):
#print (root)

for file in fnmatch.filter(files, "*.txt"):
file = os.path.join(root, file)
#print (file)
if os.path.isfile(file) and os.access(file, os.R OK):
try:
for line in open(file, 'r'):
found.update (pattern.findall (1ine))
except UnicodeDecodeError:
print ("Program could not open file ", file)

for myMatch in found:

print (myMatch)

Additional Documentation can be found at https://docs.python.org/3/library/re.html

https://docs.python.org/3/library/re.html

	Regular Expressions

