

IT101
Debugging

2

What is Debugging?
● Debugging is the process of finding and resolving of defects that prevent correct operation

of computer software or a system. Debugging tends to be harder when various
subsystems are tightly coupled, as changes in one may cause bugs to emerge in another.
(Wikipedia definition)

● Typically debugging is done with the aid of special purpose software. The software can
control (stop, resume) the program flow, watch variables, log files or memory dumps.

The terms "bug" and "debugging" are
popularly attributed to Admiral Grace Hopper
in the 1940s.[1] While she was working on a
Mark II Computer at Harvard University, her
associates discovered a moth stuck in a
relay and thereby impeding operation,
whereupon she remarked that they were
"debugging" the system. However the term
"bug" in the meaning of technical error dates
back at least to 1878 and Thomas Edison,
and "debugging" seems to have been used
as a term in aeronautics before entering the
world of computers. (Wikipedia)

3

Why Debug?
● The debugging skills of a software developer are a major factor when it comes to

eliminating defects.
● Software tends to become more and more complex, which makes debugging harder.
● Bugs may occur through memory corruption, which is difficult to isolate and track. The

error is not necessarily the origin of the problem.

Software bug in onboard guidance software caused the
destruction of four satellites (known collectively as Cluster)
and the Ariane 5 rocket on which they were riding. Shortly
after launch, the guidance software tried to convert the
horizontal velocity (which was greater than anticipated) from a
64-bit floating point number to a 16-bit signed integer, which
caused an overflow error. The guidance system (and its
backup, which had the same bug) then shut down, causing
the rocket to veer off course and, ultimately, self destruct 30
seconds after launch on June 4, 1996.

http://www.itworld.com/article/2823083/enterprise-software/88716-8-famous-software-bugs-in-space.html

http://www.itworld.com/article/2823083/enterprise-software/88716-8-famous-software-bugs-in-space.html

4

Debugging Software
● Interactive Debugging Software monitors

the flow of the program and it can modify
this flow, inspect and change variable
values, pause execution at predefined
locations and influence the outcome of
computations.

● Static Debugging Software checks the
code to identify potential problems. Static
code analysis tools come handy to
identify such problems as memory leaks,
redundant code and infinite recursive
structures.

● The first step in debugging is to
reproduce the problem, which is non-
trivial in case of memory leaks,
distributed systems and multithreaded
programs.

● Once the problem is repoduced, the
input is simplified to isolate the problem
to the minimum factors required for
debugging.

● Then the developer can use an
interactive debugger, such as the one
that comes with NetBeans, to examine
local variables, program control flow and
method outputs.

Exercise
● Run the Tennis Game version distributed for this exercise.

● Notice the bug in score counter.

● Add a breakpoint inside the TennisGame.changeScore method.

● Run the Tennis Game in Debug mode (Debug → Debug Project).

● The program execution will stop once it reaches the changeScore method.

● Open Window → Debugging → Variables and examine the variables' values.

 What is the value of the “score” and “increment” variables?

 Use “step into” or “step over” buttons to move one step further. What is the value of the “score” and “increment” vari-
ables now?

 Change the “increment” variable's value and continue the program execution.

 Where from is the “changeScore” method called?

● Fix the program and test again.

Important Debugging Buttons

	Title
	Slide 2
	Why have abstract classes?
	Slide 4
	Slide 5

