

IT101
Graphical User Interface

Foundation
● Swing is a platform-independent set of Java classes used for user Graphical User Interface (GUI) programming. Abstract

Window Toolkit (AWT) is an older Java GUI technology, some of which is still useful.

● Create a new Java Application project in NetBeans;

● Create a main class named TennisGame;

● Import javax.swing.*, java.awt.* and java.awt.geom.* packages into the TennisGame class.

● Make your TennisGame class extend the JPanel class. JPanel is a painting canvas, by extending which you will be able to
paint and display objects in TennisGame.

● A painting canvas must be contained in a window frame. JFrame is the class that serves as a frame for our TennisGame
canvas. Create a new JFrame object inside the TennisGame's “main” method.

● Create an instance of the TennisGame class and add the TennisGame object reference to the frame.

● Set the frame's size using the frame's setSize method.

● Set the frame's visibility to "true".

● Shut down the Java thread that runs your program when the frame is closed.

● Build and run your program.

● You should see an empty 300px by 300px box.

Paint the Objects
● Start painting the tennis ball by overriding the JPanel's paint method: public void paint(Graphics g);

● The paint method receives by parameter a Graphics object. We will use a newer object: Graphics2D, which
extends from Graphics. In order to do that cast Graphics g into Graphics2D.

● To draw something inside the canvas we should indicate in which position we are going to start painting.
For this, each of the points in the canvas has an associated position (x,y) being (0,0) the point of the top-
left corner.

● Set the color.

● Fill the tennis ball with color.

● Draw the ball.

● Build and run your program.

● You should see the red tennis ball at the top left of your canvas.

Animate

● Every time we paint something we have to define its position (x,y). To make the ball move, modify the
position (x,y) each time and repaint the circle in the new position.

● In our example, we keep the current position of our circle in two properties called "x" and "y". We also
create a method called moveBall() which will increase in 1 both "x" and "y", each time we call it.

● At the end of the main method we start an infinite loop "while (true)" where we repeatedly call moveBall() to
change the position of the circle and then call the JFrame's repaint() method.

● "Thread.sleep(10)" tells the processor that the Java thread which is being run must sleep for 10
milliseconds, which allows the processor to execute other threads and in particular the AWT thread which
calls the paint method.

● Build and run your program. You should see the red tennis ball moving through the canvas.

Encapsulate the Ball

● Create a class called Ball which isolates
everything that has to do with the ball.

● Make the ball go in different directions. Integers
"xa" and "ya" represent the speed in which the
ball is moving. If xa=1, the ball moves to the right,
one pixel every round of the Game Loop, if xa=-1,
the ball moves to the left. In the same way ya=1
moves the ball down and ya=-1 moves the ball up.
This is done with the lines, "x = x + xa" and "y = y
+ ya" of the moveBall() method.

● Verify that the ball does not go out of the borders
of the canvas. For example, when the ball gets to
the right border, or when (x + xa > getWidth() -
30), what we`ll do, is change the direction of the
movement on the "x": "xa = -1".

Encapsulate the Racquet

● Create a class called Racquet which isolates
everything that has to do with the racquet.

● Unlike "Ball", "Racquet" does not have any
properties for the position "y" or for the speed
"ya". This is because the racquet doesn´t change
its vertical position; it will only move left or right,
never up or down. In the paint method, the
g.fillRect(x, 330, 60, 10) instruction defines a
rectangle of 60 by 10 pixels in the position
(x,y)=(x,330). As we can see "x" can change but
"y" is fixed in 330 pixels from the top border of the
canvas.

● When someone presses a key, the keyPressed
method of "Racquet" will be called and this will set
"xa" to 1, if the key pressed is the right direction
(KeyEvent.VK_RIGHT), that will move the racquet
to the right. In the same way if we press the key
KeyEvent.VK_LEFT it will move to the left.

● When a key is released, the method keyReleased
is called and "xa" changes its value to zero, which
makes the racquet stop.

Revised TennisGame.java

● Instantiate Ball and Racquet objects in
TennisGame;

● Add a TennisGame constructor.

● To read from the keyboard it is necessary to
register an object which is in charge of "listening if
a key is pressed". This object is known as
"Listener" and it will have methods that will be
called when someone presses a key. In our
example the Listener is included in the
TennisGame constructor.

● Add the “move” method to TennisGame. “move”
calls Ball and Racquet “move” methods.

● Change the “while” loop in the “main” method to
call the TennisGame's “move” method.

Homework

● We will continue the Tennis Game project next week.

● You should have the TennisGame, Ball and Racquet classes ready (as shown above) for the next class.

● Build and run your project. Make sure your code compiles without errors, and that you see the Ball moving
across the canvas, and that you can control the Racquet movement using the left and right arrow keyboard
keys.

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

