

IT101
Inheritance, Encapsulation, Polymorphism and

Constructors

OOP Advantages and Concepts

● Main OOP Concepts

 Inheritance

 Encapsulation

 Polymorphism

● What are OOP’s claims to
fame?

 Better suited for team
development

 Facilitates utilizing and
creating reusable
software components

 Easier program
maintenance

http://www.cs.columbia.edu/~gmw/teaching/1001-s04/Lec17.ppt

Inheritance

● An abstract class can have code for some of
its methods; other methods are declared
abstract and left with no code.

● An interface only lists methods but does not
have any code.

● A concrete class may extend an abstract class
and/or implement one or several
interfaces, supplying the code for all the
methods.

● Inheritance plays a dual role:

 A subclass reuses the code from the su-
perclass.

 A subclass (or a class that implements an
interface) inherits the data type of the
superclass (or the interface) as its own
secondary type.

● A class can extend another class, inheriting all
its data elements and methods while
redefining some of them and/or adding its
own. Example:

 class Student extends Person

● A class can implement an interface,
implementing all the specified methods.
Example:

 class Poker extends Game implements
Gambling

● Inheritance implements the “is a” relationship
between objects.

● In Java, a subclass can extend only one
superclass.

● In Java, a subinterface can extend one
superinterface

● In Java, a class can implement several
interfaces — this is Java’s form of multiple
inheritance.

Inheritance

● Inheritance leads to a hierarchy of classes
and/or interfaces in an application:

● An object of a class at the bottom of a
hierarchy inherits all the methods of all the
classes above. It also inherits the data
types of all the classes and interfaces
above.

● Inheritance is also used to extend hierarchies
of library classes, reusing the library code
and inheriting library data types.

● Inheritance implements the “is a” relationship.
Not to be confused with embedding (an
object has another object as a part), which
represents the “has a” relationship.

 Sailboat IS A Boat

 Sailboat HAS A Sail

Encapsulation

● Encapsulation means that all data
members (variables) of a class are
declared private. Methods may be
private, too. Example:

 private String ssn;

● Private methods or data are visible to
and accessible only by that object. In
other words, private data or methods
can not be accessed from outside the
object.

● The class interacts with other classes
mainly through the class’s
constructors and public methods.
When data or methods are declared
public, other objects of your program
can access it.

Polymorphism

● We often want to refer to an object by its
primary, most specific, data type.

● This is necessary when we call methods
specific to this particular type of
object

● Polymorphism (meaning “many forms” in
Greek) ensures that the appropriate
method is called for an object of a
specific type when the object is
disguised as a more generic type

● Polymorphism is implemented using a
technique called late (or dynamic)
method binding: which exact method
to call is determined at run time.

http://www.c-sharpcorner.com/UploadFile/433c33/polymorphism-in-java/

Constructors

● A constructor initializes an object when it is
created. It has the same name (case
sensitive) as its class and is syntactically
similar to a method.

● Constructors have no return type, but they can
accept parameters.

● Use constructors to set initial variable values.
Example:

class Candle {

 private String color;

 Candle (String aColor) {

 this.color = aColor;

 }

}

● A subclass can (and typically should) call the
constructor of the superclass using the
special super method.

● The super method should be the first statement
of the subclass constructor.

● Example:

class ScentedCandle extends Candle {

 private float height;

 ScentedCandle(String c, float h) {

 super(c);

 this.height = h;

 }

}

Homework

● Prior to developing this program, read the requirements and draw a class diagram of the classes you intend to
build (see slide 4 for example of a class diagram).

● Mick’s Wicks makes candles in various sizes.

● Create a class named Candle that contains data fields for color, height and price.

● Create get methods for all three fields, e.g.:

public String getColor() {
 return this.color;
}

● Create set methods for color and height, but not for price. Instead, when height is set, determine the price as $2
per inch. Example:

public void setHeight(float newHeight) {
 float pricePerInch = 2;
 this.height = newHeight;
 this.price = this.height * pricePerInch;
}

● Create a child class named ScentedCandle that contains an additional data field named scent and methods to
get and set it. In the child class, override the parent’s setHeight() method to set the price of a ScentedCandle
object at $3 per inch.

● Write a MickWicks class that instantiates an object of each type of candle, sets color and height, and displays the
details (name, height and price).

● Run the MickWicks program to test the results.

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

