

IT101
Object Oriented Programming

History
● In the old days, the standard programming technique was called "procedural programming." That's because the emphasis

was on the procedures or tasks that made up a program.

● Developers designed their programs around what they thought were the key procedures. Typically, the entire program was
written in one file.

● As computer programs grew bigger and more complex, the program files became longer, very difficult to maintain and error
prone. As a result, IT professionals had to change their approach to program design.

● Today, the most popular programming technique is object-oriented programming (OOP).

● With OOP, instead of thinking first about functional procedures, you think first about the entities in your problem. The
entities are called objects.

● The first object-oriented programming language was SmallTalk, developed in 1960-ies in Norway, but it did not become
popular until 1980-ies.

● The object oriented C++ language was created by Bjarne Stroustrup of Bell Labs out of the procedural C language. Bjarne
wrote the following about the differences between the two design approaches:

 A programming language serves two related purposes: it provides a vehicle for the programmer to specify actions to be
executed and a set of concepts for the programmer to use when thinking about what can be done. The first aspect ide-
ally requires a language that is "close to the machine", so that all important aspects of a machine are handled simply
and efficiently in a way that is reasonably obvious to the programmer. The C language was primarily designed with
this in mind. The second aspect ideally requires a language that is "close to the problem to be solved" so that the con-
cepts of a solution can be expressed directly and concisely. The facilities added to C to create C++ were primarily
designed with this in mind.

● Today, Java is one of the most popular Object Oriented Programming languages.

Object
● An object is a set of related data which identifies the current state of the object and a set of its

behaviors.

● Examples of objects:

●

●

●

●

●

● Benefits of OOP:

 Programs are more understandable - since people tend to think about problems in terms
of objects, it's easier for people to understand a program that's split into objects.

 Fewer errors - since objects provide encapsulation (isolation) for the data, it's harder for the
data to get messed up.

human entities physical objects mathematical entities

employees cars in a traffic-flow simulation points in a coordinate system

customers aircraft in an air-traffic control system complex numbers

students electrical components in a circuit-
design program

time

human entities physical objects mathematical entities

employees cars in a traffic-flow simulation points in a coordinate system

customers aircraft in an air-traffic control system complex numbers

students electrical components in a circuit-
design program

time

Class

● A class is a description (template or
blueprint) for a set of objects.

● Note the three computers on a conveyer
belt in a manufacturing plant:

 The three computers represent
objects, and the
specifications document
represents a class. The
specifications document is
a blueprint that describes
the computers: it lists the
computers' components
and describes the
computers' features.

● Think of an object as a physical example
for a class's description. More
formally, we say that an object is an
instance of a class.

computer objects

Specifications for a computer

Variables and Methods

● A class's variables specify the type of data that an object can store. For example, if you have a class for
computer objects, and the Computer class contains a hardDiskSize instance variable, then each
computer object stores a value for the size of the computer's hard disk. Example:

class Computer {
 public int hardDiskSize;
}

● A class's methods specify the behavior that an object can exhibit. For example, if you have a class for
computer objects, and the Computer class contains a printSpecifications instance method, then each
computer object can print a specifications report (the specifications report shows the computer's hard
disk size, CPU speed, cost, etc.). Example:

class Computer {
 public String printSpecifications() {
 // ...
 }
}

● Java methods must specify what the method returns. A method may return a primitive value, an object
instance or an array. A method may also return nothing, such as the “main” method, in which case
the return type is “void”: public static void main (String args []);

● It is possible to pass one or more values to a method when the method is called. These values are called
arguments. In the “main” method example above the method accepts an array of String objects as an
argument.

Homework

● Create a new Java project with “com.presidents” package in NetBeans;

● Create a class named “President”. The class should have two public instance variables of type String: “name” and “country”.

● The class should have one public method “toString”. The method should return a String with the president's name and
country, for example:

public String toString() {
 return this.name + “ is the president of “ + this.country;
}

● Create another class in the same package, name it “PresidentsList”.

● The PresidentsList class should have only the main method that creates an array of 5 instances of the President class for
USA (Donald Trump), Russia (Vladimir Putin), China (Xi Jinping), France (Emmanuel Macron) and Mexico (Enrique
Pena Nieto). Then loop through the array and output the President's toString method to the console. Example of the
PresidentsList.main method:

public static void main (String args[]) {
 President [] pArray = new President[5];
 pArray[0] = new President();
 pArray[0].country = “USA”;
 pArray[0].name = “Donald Trump”;
 // ... - repeat for the remaining four presidents
 for (int i = 0; i < pArray.length; i++) {
 System.out.println(pArray[i].toString());
 }
}

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

