

IT101
Characters: from ASCII to Unicode

Java Primitives

● Note the “char” (character) primitive. How does it represent the alphabet letters?

● What is the difference between “char” and “String”? Does a “String” consist of “char”s?

Characters: Historical Perspective

● Back in the early 1960s there was no character representation standard. Hence computer
manufacturers were doing things pretty much any way they saw fit to do. This resulted in the
following situation:

 Different computers had no way of communicating with each other.

 Each manufacturer had their own ways of representing the letters of the alphabet, numbers
and the likes.

 There were over 60 different ways, at the time, to represent these letters, numbers and any
specific symbols.

 I.B.M. with it's different equipment had 9(!) different character sets.

● Bob Bemer worked for IBM and played an important role in the establishment of the first character
representation standard: ASCII.

ASCII

● American Standard Code for
Information Interchange

● ASCII was able to represent every
English character using a
number between 32 and 127.
Space was 32, the capital letter
"A" was 65, capital letter “S” was
83 (binary representation:
1010011) etc.

● This could conveniently be stored in
7 bits. Most computers in those
days were using 8-bit bytes, so
not only could they store every
possible ASCII character, but
they had a whole one bit to
spare, which they could use for
their own devious purposes.

http://en.wikipedia.org/wiki/ASCII

Problem with ASCII

● All was good, assuming you were an English speaker, but ASCII started becoming popular with the
advent of first IBM Personal Computer in 1981.

● Because bytes have room for up to eight bits, lots of people got to thinking, "gosh, we can use the
codes 128-255 for our own purposes." The trouble was, lots of people had this idea at the same
time, and they had their own ideas of what should go where in the space from 128 to 255.

● As soon as people started buying PCs outside of America all kinds of different character sets were
dreamed up, which all used the top 128 characters for their own purposes. For example on some
PCs the character code 130 would display as é, but on computers sold in Israel it was the Hebrew
letter Gimel (ג), so when Americans would send their résumés to Israel they would arrive as
rגsumגs. In many cases, such as Russian, there were lots of different ideas of what to do with the
upper-128 characters, so you couldn't even reliably interchange Russian documents.

● Eventually this free-for-all got codified in the ANSI (American National Standards Institute) standard. In
that standard, everybody agreed on what to do below 128, which was pretty much the same as
ASCII, but there were lots of different ways to handle the characters from 128 and on up,
depending on where you lived. These different systems were called code pages or character
encoding.

● Until 1990-ies a byte (8 bits) was a character and as long as you never moved a string from one
computer to another, or spoke more than one language, it would sort of always work. But as soon
as the Internet happened, it became quite commonplace to move strings from one computer to
another, and the whole mess came tumbling down. Luckily, Unicode was invented.

Unicode

● Unicode was a brave effort to create a single character set that included every reasonable writing
system on the planet.

● Unicode has a different way of thinking about characters. Until now, we've assumed that a letter maps
to some bits which you can store on disk or in memory: A -> 0100 0001 (65)

● In Unicode, a letter maps to something called a code point which is still just a theoretical concept. How
that code point is represented in memory or on disk is another story.

● Every conceivable letter in every alphabet is assigned a magic number by the Unicode consortium
which is written like this: U+0639. The U+ means "Unicode" and the numbers are hexadecimal.
U+05E2 is the Hebrew letter Ayin. The English letter A would be U+0041. You can find them all
using the charmap utility on Windows 2000/XP or visiting the Unicode web site (
http://www.unicode.org/charts/).

● There is no real limit on the number of letters that Unicode can define.

● Various contemporary character encodings implement the Unicode standard. The most popular of them
is UTF-8.

http://www.joelonsoftware.com/articles/Unicode.html

http://www.unicode.org/charts/

UTF-8

● UTF (Universal True Font) is a variable width encoding which can store any of the Unicode characters.

● In UTF-8, every code point from 0-127 is stored in a single byte. Only code points 128 and above are
stored using 2, 3 or 4 bytes. This has the neat side effect that English text looks exactly the same
in UTF-8 as it did in ASCII, so Americans don't even notice anything wrong.

 Hello in Unicode: U+0048 U+0065 U+006C U+006C U+006F;

 Hello in UTF-8: 48 65 6C 6C 6F

● UTF-8 has become the dominant character encoding for the World Wide Web, accounting for more
than half of all Web pages. UTF-8 is also increasingly being used as the default character
encoding in operating systems, programming languages, APIs, and software applications.

Homework

● Create a new program in NetBeans. The program shall convert each character of a given word into a
decimal equivalent

● Open NetBeans IDE and go to File -> New Project

● Select “Java Application” from Project types.

● Type in project name. Click “Finish” and NetBeans will generate all the class definition and main method
code for you.

Homework

● F11 compiles the code;

● F6 runs the code;

● See the output:

 H is 72

 e is 101

 Etc.

 Optional assignment:
Instead of hard-coding the
word in the “main” method,
prompt the user for word
input. Check the last week's
exercise for sample code.

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

